Solveeit Logo

Question

Question: How do you use the half angle identity to find the exact value of \[\cos 75\] degrees?...

How do you use the half angle identity to find the exact value of cos75\cos 75 degrees?

Explanation

Solution

The given degree iscos75\cos 75 degrees.
We find the exact values of cos75\cos 75 degrees using the half angle formula.
Half angle identities are closely related to the double angle identities. We can use half angle identities when we have an angle that is half the size of a special angle.
We use the trigonometric ratios of an angle of the form cos(18030)\cos ({180^ \circ } - {30^ \circ })

Complete step-by-step solution:
The given degree is cos75\cos 75 degrees.
We find the exact values of cos75\cos 75 degrees using the half angle formula.
Let us consider cos75=cost\cos {75^ \circ } = \cos t
Multiply 22 by tt, hence we get
cos2t=cos(2×75)\Rightarrow \cos 2t = \cos (2 \times 75)
Multiply 22 by 7575, hence we get
cos2t=cos150\Rightarrow \cos 2t = \cos {150^ \circ }
We rewrite cos150\cos {150^ \circ }, hence we get
cos150=cos(30+180)\Rightarrow \cos {150^ \circ } = \cos ( - {30^ \circ } + {180^ \circ })
We use the trigonometric ratios of an angle of the form cos(18030)\cos ({180^ \circ } - {30^ \circ }), hence we get
cos(18030)=cos30\Rightarrow \cos ({180^ \circ } - {30^ \circ }) = - \cos {30^ \circ }
cos30=32\Rightarrow \cos {30^ \circ } = - \dfrac{{\sqrt 3 }}{2}
Use trigonometric identity: cos2t=2cos2t1\cos 2t = 2{\cos ^2}t - 1
We apply cos2t\cos 2t in the identity, hence we get
32=2cos2t1\Rightarrow - \dfrac{{\sqrt 3 }}{2} = 2{\cos ^2}t - 1
Factor the constant term, hence we get
2cos2t=132\Rightarrow 2{\cos ^2}t = 1 - \dfrac{{\sqrt 3 }}{2}
Now take LCM in RHS (Right Hand Side), hence we get
2cos2t=232\Rightarrow 2{\cos ^2}t = \dfrac{{2 - \sqrt 3 }}{2}
Divide by 22 on both sides, hence we get
cos2t=232×2\Rightarrow \dfrac{{\not{2}}}{{\not{2}}}{\cos ^2}t = \dfrac{{2 - \sqrt 3 }}{{2 \times 2}}
Multiply the denominator, hence we get
cos2t=234\Rightarrow {\cos ^2}t = \dfrac{{2 - \sqrt 3 }}{4}
Take square root on both sides, hence we get
cost=±232\Rightarrow \cos t = \pm \dfrac{{\sqrt {2 - \sqrt 3 } }}{2}

Hence, we get
cost=cos75=±232\cos t = \cos {75^ \circ } = \pm \dfrac{{\sqrt {2 - \sqrt 3 } }}{2}

Note: The half angle identities are often used to replace squared trigonometric function by a non-squared trigonometric function.
Half angle identities allow us to find the value of the sine and cosine of half angle if we know the value of the cosine of the original angle.
Instead of constructing the triangle, we can also find the value of cosine using cosθ=±1sin2θ\cos \theta = \pm \sqrt {1 - {{\sin }^2}\theta } formula.