Question
Question: How do you use the half angle identity to find the exact value of \[\tan 165^\circ \] ?...
How do you use the half angle identity to find the exact value of tan165∘ ?
Solution
Here, in this question, we need to find the exact value of tan165∘ using the half angle identity. In order to use the half angle identity, we will first rewrite the given value and then simplify in such a way that we get to use half angle identity and find the answer.
Complete step-by-step solution:
The given value is tan165∘ , we need to find its exact value by using the half angle identity.
First, let tan165∘ be t …………….... (1)
Now, we will use half angle on tan165∘ ,
\Rightarrow$$$\tan 2\left( {165^\circ } \right) = \tan 330^\circ $$
Now, $$\tan 330^\circ $$ can also written using $$360^\circ $$ by
\Rightarrow\tan 330^\circ = \tan (360^\circ - 30^\circ )$$
We clearly know a property of $\tan $, i.e., $\tan (\pi - \theta ) = \tan ( - \theta )$ , it becomes
$\Rightarrow\tan 330^\circ = \tan (360^\circ - 30^\circ ) = \tan ( - 30^\circ )
There is another property that is $\tan ( - \theta ) = - \tan \theta $ , therefore,\tan ( - 30^\circ )becomes,
$\Rightarrow$$$\tan ( - 30^\circ ) = - \tan 30^\circ
We know that tan30∘=31 , therefore we get
\Rightarrow$$$ - \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }}$$
Hence $$\tan 330^\circ = - \dfrac{1}{{\sqrt 3 }}$$ ……………... (2)
Now, using the identity of trigonometric functions,
\Rightarrow\tan 2t = \dfrac{{2\tan t}}{{1 - {{\tan }^2}t}}$$ ,
And now from $(1)$ we have $$\tan 165^\circ = t$$
This implies that $\tan 2t = \tan 330^\circ $ ,
$\Rightarrow\tan 2t = \tan 2(165^\circ ) = \dfrac{{2t}}{{1 - {t^2}}}
From $(2)$ we can say that $\tan 2t = \dfrac{1}{{\sqrt 3 }}$ .
Now, putting all this together we get,
$\Rightarrow$ $\tan 2(165^\circ ) = \tan 2t = \dfrac{{2t}}{{1 - {\operatorname{t} ^2}}} = \dfrac{1}{{\sqrt 3 }}$
This implies,
$\Rightarrow$ $\dfrac{{2t}}{{1 - {\operatorname{t} ^2}}} = \dfrac{1}{{\sqrt 3 }}$
Cross multiplying this, we get,
$\Rightarrow$ $2t(\sqrt {3)} = 1 - {t^2}$
Removing the brackets,
$\Rightarrow$ $2\sqrt 3 t = 1 - {t^2}$
Forming a quadratic equation by transferring the terms to one side we get,
$\Rightarrow$$${t^2} - 2\surd 3t - 1 = 0
After forming an equation, we can solve that quadratic equation by using the quadratic equation formula:
x = 2a−b±b2 - 4ac
The equation is t2−2√3t−1=0
Here a=1,b=−23,c=−1
Applying in the formula,
⇒ x=2(1)−(−23)±(−23)2−4(−1)(1)
\Rightarrow$$$x = \dfrac{{2\sqrt 3 \pm \sqrt {12 + 4} }}{2}$$
\Rightarrowx = \dfrac{{2\sqrt 3 \pm \sqrt {16} }}{2}$$
$\Rightarrowx = \dfrac{{2\sqrt 3 \pm 4}}{2}
Now we can split it into two, as the expression involves $ \pm $ in it, one can be plus the other can be minus.
$\Rightarrow$$$x = \dfrac{{2\sqrt 3 + 4}}{2},\dfrac{{2\sqrt 3 - 4}}{2}
\Rightarrow$$$x = \dfrac{{2\left( {\sqrt 3 + 2} \right)}}{2},\dfrac{{2\left( {\sqrt 3 - 2} \right)}}{2}$$
\Rightarrow$x=3+2,3−2
⇒ x=3+2,x=3−2
Therefore, the values of x are 3+2,3−2 .
**Since tan165∘ , and tan165 < 0 , and the answer 3−2 is accepted. **
Note: Alternative method:
If the question is silent about the method that should be used, we can solve this tan165∘ in another easy method.
By using the property of trigonometric functions,
tan(a−b)=1+tana.tanbtana−tanb
So here we havetan165∘ , which can be written as,
tan165∘=tan(180−15)∘
Appling in the formula,
tan165∘=tan(180−15)∘=1+tan180∘tan15∘tan180∘−tan15∘
tan165∘=1+0.2−30−2−3
tan165∘=1−2+3
tan165∘=−2+3 tan165∘=3−2
Therefore, the answer is 3−2.