Solveeit Logo

Question

Question: How do you use the half angle identity to find \( \sin {105^ \circ } \) ?...

How do you use the half angle identity to find sin105\sin {105^ \circ } ?

Explanation

Solution

Hint : We use half angle formulae for sine function to find the value of the given trigonometric function. The formula or identities are universally true and holds good for any angle.
Use the half angle formula
sin(θ2)=±1cosθ2\sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}}

Complete step by step solution:
In the case we want to find sin(105)\sin \left( {{{105}^ \circ }} \right) so that’s what we want sin(θ2)\sin \left( {\dfrac{\theta }{2}} \right) to equal .
To find what our θ\theta is , set these to equal to each other.
sin(105)=sin(θ2)\sin \left( {{{105}^ \circ }} \right) = \sin \left( {\dfrac{\theta }{2}} \right)
105=θ2\Rightarrow {105^ \circ } = \dfrac{\theta }{2}
210=θ\Rightarrow {210^ \circ } = \theta
This is our θ\theta . Now, we can use the half angle formula.
sin(105)\sin \left( {{{105}^ \circ }} \right)
=sin(2102)= \sin \left( {{{\dfrac{{210}}{2}}^ \circ }} \right)
=±1cos(210)2= \pm \sqrt {\dfrac{{1 - \cos \left( {{{210}^ \circ }} \right)}}{2}}
=±1+322= \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}}
=±1+34= \pm \sqrt {\dfrac{{1 + \sqrt 3 }}{4}}
=±2+34= \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{{\sqrt 4 }}
=±2+32= \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2}
Since 105{105^ \circ } is in the second quadrant, we know that in the second quadrant sinθ\sin \theta be positive.
Therefore,
sin105=±2+32\sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2}
So, the correct answer is “Option sin105=±2+32\sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} ”.

Note : We will take a negative answer when θ\theta lies in 3rd{3^{rd}} or 4th{4^{th}} quadrant. The abbreviation for 'all sin cos tan' rule in trigonometry is ASTC . It can be memorized as "All Students Take Calculus". The first letter of the first word in this phrase is 'A'. This may be taken to indicate that all trigonometric ratios in the first quadrant are positive .