Solveeit Logo

Question

Question: How do you use the half-angle formulas to find the exact value of \(\tan \left( {\dfrac{{3\pi }}{8}}...

How do you use the half-angle formulas to find the exact value of tan(3π8)\tan \left( {\dfrac{{3\pi }}{8}} \right) ?

Explanation

Solution

Hint : Here we have to use half-angle formula to of tan(θ)\tan \left( \theta \right) to find the value of tan(3π8)\tan \left( {\dfrac{{3\pi }}{8}} \right) .
We can substitute the value of tan(3π8)\tan \left( {\dfrac{{3\pi }}{8}} \right) with any variable after applying the formula, so that we can form a quadratic equation and then we can find the roots of that equation. Also, we know that the value of tan(3π4)is1\tan \left( {\dfrac{{3\pi }}{4}} \right)\,\,is\, - 1.
Formula used: tan(2θ)=2tan(θ)1tan2θ\tan \left( {2\theta } \right) = \dfrac{{2\tan \left( \theta \right)}}{{1 - {{\tan }^2}\theta }}

Complete step-by-step answer :
In the given question, let tan(3π8)=t\tan \left( {\dfrac{{3\pi }}{8}} \right)\, = \,t
Now, applying the formula tan(2θ)=2tan(θ)1tan2θ\tan \left( {2\theta } \right) = \dfrac{{2\tan \left( \theta \right)}}{{1 - {{\tan }^2}\theta }}
tan(3π4)=2tan(3π8)1tan2(3π8)\tan \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{{2\tan \left( {\dfrac{{3\pi }}{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{{3\pi }}{8}} \right)}}
Now putting the value of tan(3π8)=tandtan(3π4)=1\tan \left( {\dfrac{{3\pi }}{8}} \right)\, = \,t\,\,and\,\,\tan \left( {\dfrac{{3\pi }}{4}} \right)\, = \, - 1
1=2t1t2- 1 = \dfrac{{2t}}{{1 - {t^2}}}
On cross-multiplication, we get
1(1t2)=2t- 1\left( {1 - {t^2}} \right) = 2t
t21=2t{t^2} - 1 = 2t
On transposing, we get
t22t1=0{t^2} - 2t - 1 = 0
Now using the quadratic formula to find the roots of above equation
t=b±b24ac2at\, = \,\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Now, compare the above equation with ax2+bx+c=0a{x^2} + bx + c = 0
Therefore, a=1,b=2,c=1a\, = \,1\,,\,b = \, - 2\,,\,c\, = \, - 1
Now, on putting the values
t=(2)±(2)24(1)(1)2(1)\Rightarrow t\, = \,\dfrac{{ - \left( { - 2} \right) \pm \sqrt {{{\left( { - 2} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}
On simplification, we get
t=2±4+42\Rightarrow t\, = \,\dfrac{{2 \pm \sqrt {4 + 4} }}{2}
On adding, we get
t=2±82\Rightarrow t\, = \,\dfrac{{2 \pm \sqrt 8 }}{2}
Taking the square root of 88
t=2±222\Rightarrow t\, = \,\dfrac{{2 \pm 2\sqrt 2 }}{2}
On dividing, we get
t=1±2\Rightarrow t\, = \,1 \pm \sqrt 2
So, there are two values of t as 12and1+21 - \sqrt 2 \,and\,1 + \sqrt 2 but we have to neglect one value of t i.e. 121 - \sqrt 2 because it is a negative value but the value of tan(3π8)\tan \left( {\dfrac{{3\pi }}{8}} \right) would be positive because angle lies in the first quadrant and the value of tan(θ)\tan \left( \theta \right) is positive in the first quadrant.
Therefore, the value of tan(3π8)\tan \left( {\dfrac{{3\pi }}{8}} \right) is 1+21 + \sqrt 2 .
So, the correct answer is “1+21 + \sqrt 2 ”.

Note : This is a very standard method of finding the values of trigonometric quantities having small angles. It is very important to remember the trigonometric formulas. Without formulas, trigonometry is incomplete. Half-angle formulas are one among those formulas. The negative value is neglected based on the quadrant in which the given tan function lies; if it was lying in the 3rd quadrant then 121 - \sqrt 2 will be the solution.