Solveeit Logo

Question

Question: How do you use the half-angle formulas to determine the exact values of sine, cosine and tangent of ...

How do you use the half-angle formulas to determine the exact values of sine, cosine and tangent of the angle π12\dfrac{\pi }{{12}} ?

Explanation

Solution

In order to solve this question, we need to use the half angle formula to find the respective values of the trigonometric functions. We find the value of xx by equating x2\dfrac{x}{2} with π12\dfrac{\pi }{{12}}. We place this value in the half angle formula and solve it further to get our required answers.

Formula used: sin2(x2)=1cosx2{\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{2},cos2(x2)=1+cosx2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos x}}{2},tan2(x2)=1cosx1+cosx{\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{{1 + \cos x}}

Complete Step by Step Solution:
In this question, we are asked to find the values of the trigonometric functions sine, cosine and tangent for the angle π12\dfrac{\pi }{{12}} using the half angle formula.
All values less than π2\dfrac{\pi }{2} fall in the first quadrant of a trigonometry unit circle.
As all the trigonometric functions are positive in the first quadrant hence the trigonometric functions for the angle π12\dfrac{\pi }{{12}} will also be positive as it falls in the first quadrant.
The half angle formula for sine is given as:
sin2(x2)=1cosx2\Rightarrow {\sin ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{2}
Angle x2\dfrac{x}{2} here corresponds to π12\dfrac{\pi }{{12}}
Therefore, x2=π12\dfrac{x}{2} = \dfrac{\pi }{{12}}
x=π12×2=π6\Rightarrow x = \dfrac{\pi }{{12}} \times 2 = \dfrac{\pi }{6}
Placing this value of xx in the formula, we get:
sin2(π12)=1cos(π6)2\Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 - \cos \left( {\dfrac{\pi }{6}} \right)}}{2}
On simplifying it further, we get:
sin2(π12)=1cos302\Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 - \cos {{30}^ \circ }}}{2}
As we know that the value of cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}
Therefore, sin2(π12)=1322{\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 - \dfrac{{\sqrt 3 }}{2}}}{2}
sin2(π12)=2322=232×12\Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\dfrac{{2 - \sqrt 3 }}{2}}}{2} = \dfrac{{2 - \sqrt 3 }}{2} \times \dfrac{1}{2}
sin2(π12)=234\Rightarrow {\sin ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 - \sqrt 3 }}{4}
Let us take square root of both sides:
sin(π12)=234\Rightarrow \sin \left( {\dfrac{\pi }{{12}}} \right) = \sqrt {\dfrac{{2 - \sqrt 3 }}{4}}
sin(π12)=1223\Rightarrow \sin \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{2}\sqrt {2 - \sqrt 3 }
Let us find the value for cosine:
The half angle formula for cosine is given as cos2(x2)=1+cosx2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos x}}{2}
Similarly, here also x=π6x = \dfrac{\pi }{6}
Therefore, cos2(π12)=1+cos(π6)2{\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 + \cos \left( {\dfrac{\pi }{6}} \right)}}{2}
On simplifying it further, we get:
cos2(π12)=1+cos302\Rightarrow {\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 + \cos {{30}^ \circ }}}{2}
As we know that the value of cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}
Therefore, cos2(π12)=1+322{\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}
cos2(π12)=2+322=2+32×12\Rightarrow {\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\dfrac{{2 + \sqrt 3 }}{2}}}{2} = \dfrac{{2 + \sqrt 3 }}{2} \times \dfrac{1}{2}
cos2(π12)=2+34\Rightarrow {\cos ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{4}
Let us take square root of both sides:
cos(π12)=2+34\Rightarrow \cos \left( {\dfrac{\pi }{{12}}} \right) = \sqrt {\dfrac{{2 + \sqrt 3 }}{4}}
cos(π12)=122+3\Rightarrow \cos \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{1}{2}\sqrt {2 + \sqrt 3 }
Let us find the half-angle value for tangent:
The half – angle formula for tangent is given as: tan2(x2)=1cosx1+cosx{\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos x}}{{1 + \cos x}}
Now as we already know that x=π6x = \dfrac{\pi }{6}
Therefore, tan2(x2)=1cos(π6)1+cos(π6){\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos \left( {\dfrac{\pi }{6}} \right)}}{{1 + \cos \left( {\dfrac{\pi }{6}} \right)}}
tan2(x2)=1cos301+cos30\Rightarrow {\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \cos {{30}^ \circ }}}{{1 + \cos {{30}^ \circ }}}
As we know that the value of cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}
Therefore, tan2(x2)=1321+32{\tan ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 - \dfrac{{\sqrt 3 }}{2}}}{{1 + \dfrac{{\sqrt 3 }}{2}}}
On simplifying it further, we get:
tan2(π12)=2322+32\Rightarrow {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\dfrac{{2 - \sqrt 3 }}{2}}}{{\dfrac{{2 + \sqrt 3 }}{2}}}
tan2(π12)=232×22+3\Rightarrow {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 - \sqrt 3 }}{2} \times \dfrac{2}{{2 + \sqrt 3 }}
tan2(π12)=232+3\Rightarrow {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}
Taking square root on both sides of the equation, we get:
tan(π12)=232+3\Rightarrow \tan \left( {\dfrac{\pi }{{12}}} \right) = \sqrt {\dfrac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}}

Thus 232+3\sqrt {\dfrac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }}} is the required answer.

Note: Trigonometry is a branch of mathematics which deals with triangles. There are many trigonometric formulas that establish a relation between the lengths and angles of respective triangles. In trigonometry, we use a right-angled triangle to find ratios of its different sides and angles such as sine, cosine, tan, and their respective inverse like cosec, sec, and cot.
We may even consider a complete circle and divide it into four quadrants to help us understand our trigonometric identities as so:

When the whole turn around the circle is equal to 2π2\pi , while a half circle is equal to π\pi . The different quadrants are divided into different angles. All trigonometric identities have positive signs in the first quadrant, while sine has positive values in the second quadrant. Tan has positive values in the third quadrant and cosine has positive values in the fourth quadrant.