Solveeit Logo

Question

Question: How do you use the half angle formulas to determine the exact values of sine, cosine and tangent of ...

How do you use the half angle formulas to determine the exact values of sine, cosine and tangent of the angle 7π12\dfrac{7\pi }{12}.

Explanation

Solution

In this problem we need to calculate the sine, cosine and tangent values of the given angle by using the half angle formulas. To use the half angle formulas, we need to identify the quadrant in which the given angle lies. After that need to find the value of θ\theta such that the cosine of the θ\theta is known and the relation between the θ\theta and given angle is a multiple of 22.Now we will use the half angle formulas sinθ2=±1cosθ2\sin \dfrac{\theta }{2}=\pm \sqrt{\dfrac{1-\cos \theta }{2}}, cosθ2=±1+cosθ2\cos \dfrac{\theta }{2}=\pm \sqrt{\dfrac{1+\cos \theta }{2}} and tanθ2=±1cosθ1+cosθ\tan \dfrac{\theta }{2}=\pm \sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}.

Complete step by step answer:
Given angle 7π12\dfrac{7\pi }{12}.
We know that the angle 7π12=105\dfrac{7\pi }{12}=105{}^\circ lies in the second quadrant. So, the sine value of the given angle is positive and the remaining values that means cosine and tangent values are negative.
Let us consider the angle 7π6=210\dfrac{7\pi }{6}=210{}^\circ .
We know the sine, cosine and tangent values for 7π6\dfrac{7\pi }{6}.
Now we have the relation between the angles 7π12\dfrac{7\pi }{12}, 7π6\dfrac{7\pi }{6} as
7π6=2×7π12 7π12=7π62 \begin{aligned} & \Rightarrow \dfrac{7\pi }{6}=2\times \dfrac{7\pi }{12} \\\ & \Rightarrow \dfrac{7\pi }{12}=\dfrac{\dfrac{7\pi }{6}}{2} \\\ \end{aligned}
From the above equation we can say that the considered angle and given angle has a relation in terms of 22. So, we can use the angle 7π6\dfrac{7\pi }{6} to calculate the value of 7π12\dfrac{7\pi }{12}.
Now the sine value of the given angle will be given by
sin(7π12)=1cos7π62\Rightarrow \sin \left( \dfrac{7\pi }{12} \right)=\sqrt{\dfrac{1-\cos \dfrac{7\pi }{6}}{2}}
We know that the value of cos7π6=32\cos \dfrac{7\pi }{6}=-\dfrac{\sqrt{3}}{2}. Substituting this value in the above equation, then we will get
sin(7π12)=1(32)2 sin(7π12)=2+322 sin(7π12)=2+32 \begin{aligned} & \Rightarrow \sin \left( \dfrac{7\pi }{12} \right)=\sqrt{\dfrac{1-\left( -\dfrac{\sqrt{3}}{2} \right)}{2}} \\\ & \Rightarrow \sin \left( \dfrac{7\pi }{12} \right)=\sqrt{\dfrac{\dfrac{2+\sqrt{3}}{2}}{2}} \\\ & \Rightarrow \sin \left( \dfrac{7\pi }{12} \right)=\dfrac{\sqrt{2+3}}{2} \\\ \end{aligned}
Now the cosine value of the angle 7π12\dfrac{7\pi }{12} is given by
cos(7π12)=1+(32)2 cos(7π12)=2322 cos(7π12)=232 \begin{aligned} & \Rightarrow \cos \left( \dfrac{7\pi }{12} \right)=-\sqrt{\dfrac{1+\left( -\dfrac{\sqrt{3}}{2} \right)}{2}} \\\ & \Rightarrow \cos \left( \dfrac{7\pi }{12} \right)=-\sqrt{\dfrac{\dfrac{2-\sqrt{3}}{2}}{2}} \\\ & \Rightarrow \cos \left( \dfrac{7\pi }{12} \right)=-\dfrac{\sqrt{2-3}}{2} \\\ \end{aligned}
Now the tangent value of the angle 7π12\dfrac{7\pi }{12} is given by
tan(7π12)=1(32)1+(32) tan(7π12)=2+32232 tan(7π12)=2+323 \begin{aligned} & \Rightarrow \tan \left( \dfrac{7\pi }{12} \right)=-\sqrt{\dfrac{1-\left( -\dfrac{\sqrt{3}}{2} \right)}{1+\left( -\dfrac{\sqrt{3}}{2} \right)}} \\\ & \Rightarrow \tan \left( \dfrac{7\pi }{12} \right)=-\sqrt{\dfrac{\dfrac{2+\sqrt{3}}{2}}{\dfrac{2-\sqrt{3}}{2}}} \\\ & \Rightarrow \tan \left( \dfrac{7\pi }{12} \right)=-\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}} \\\ \end{aligned}

Note:
For this type of problem students directly use the formulas and then write the solutions without considering the signs. But one should take care of the signs of the trigonometric ratios in their solutions. So, we need to consider the quadrant of the angle in which it lies.