Solveeit Logo

Question

Question: How do you use the half-angle formula to find \(\sin \left( {\dfrac{{9\pi }}{8}} \right)\)?...

How do you use the half-angle formula to find sin(9π8)\sin \left( {\dfrac{{9\pi }}{8}} \right)?

Explanation

Solution

We start solving the problem by recalling the half-angle formula for the sine function as sinx2=1cosx2\sin \dfrac{x}{2} = \sqrt {\dfrac{{1 - \cos x}}{2}} . We then find the value of x so that x2\dfrac{x}{2} is equal to the value 9π8\dfrac{{9\pi }}{8}. We then make use of the results cos(2π+θ)=cosθ\cos \left( {2\pi + \theta } \right) = \cos \theta to proceed through the problem. We then make the necessary arrangements inside the square root and make use of the fact that 9π8\dfrac{{9\pi }}{8} lies in the third quadrant and sin function is negative in the third quadrant to get the required answer.

Complete step-by-step solution:
According to the problem, we are asked to find the value of sin9π8\sin \dfrac{{9\pi }}{8} using the half-angle formula. Let us recall the half-angle formula for the sine function.
We know that the half-angle formula for sine function is defined as,
sinx2=1cosx2\sin \dfrac{x}{2} = \sqrt {\dfrac{{1 - \cos x}}{2}} .............….. (1)
Now, we need to find the value of sin9π8\sin \dfrac{{9\pi }}{8}. So, we have
x2=9π8\Rightarrow \dfrac{x}{2} = \dfrac{{9\pi }}{8}
Multiply both sides by 2,
x=9π4\Rightarrow x = \dfrac{{9\pi }}{4}
Let us substitute the value in equation (1)
sin9π8=1cos9π42\Rightarrow \sin \dfrac{{9\pi }}{8} = \sqrt {\dfrac{{1 - \cos \dfrac{{9\pi }}{4}}}{2}}
As we know cos(2π+θ)=cosθ\cos \left( {2\pi + \theta } \right) = \cos \theta . Then,
sin9π8=1cos(2π+π4)2\Rightarrow \sin \dfrac{{9\pi }}{8} = \sqrt {\dfrac{{1 - \cos \left( {2\pi + \dfrac{\pi }{4}} \right)}}{2}}
Simplify the terms,
sin9π8=1cos(π4)2\Rightarrow \sin \dfrac{{9\pi }}{8} = \sqrt {\dfrac{{1 - \cos \left( {\dfrac{\pi }{4}} \right)}}{2}}
We know that cosπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}. Then,
sin9π8=1122\Rightarrow \sin \dfrac{{9\pi }}{8} = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{2}}
Take LCM and move 2\sqrt 2 in the denominator,
sin9π8=2122\Rightarrow \sin \dfrac{{9\pi }}{8} = \sqrt {\dfrac{{\sqrt 2 - 1}}{{2\sqrt 2 }}}
Multiply numerator and denominator by 2\sqrt 2 ,
sin9π8=224\Rightarrow \sin \dfrac{{9\pi }}{8} = \sqrt {\dfrac{{2 - \sqrt 2 }}{4}}
Simplify the terms,
sin9π8=222\Rightarrow \sin \dfrac{{9\pi }}{8} = \dfrac{{\sqrt {2 - \sqrt 2 } }}{2}
Since 9π8\dfrac{{9\pi }}{8} lies in the third quadrant. So, the sine function will be negative.
sin9π8=222\therefore \sin \dfrac{{9\pi }}{8} = - \dfrac{{\sqrt {2 - \sqrt 2 } }}{2}

Hence, the value of sin9π8\sin \dfrac{{9\pi }}{8} is 222 - \dfrac{{\sqrt {2 - \sqrt 2 } }}{2}

Note: We should perform each step carefully in order to avoid calculation mistakes and confusion. We should keep in mind the nature of the values of trigonometric functions in different quadrants while solving this type of problem. Similarly, we can expect the formulas to find the value of sin9π8\sin \dfrac{{9\pi }}{8} and cos9π8\cos \dfrac{{9\pi }}{8} using the formula of cos2θ\cos 2\theta .