Solveeit Logo

Question

Question: How do you use the fundamental identities to simplify \( \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - ...

How do you use the fundamental identities to simplify 1sin2xcsc2x1\dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} ?

Explanation

Solution

Hint : The identity that we will use in this question is that the sum of the squares of sine function and cosine function is equal to one, and the other identity used states that the difference of the squares of the cosecant and cotangent function is one. Using these identities we can simplify the fraction, and then we will convert all the trigonometric ratios in the form of the sine and cosine functions. The trigonometric terms are now simplified, now we will simplify the fraction by canceling out the common terms present in the numerator and the denominator.

Complete step-by-step answer :
In this question, we are given
Complete step by step answer:
We are given 1sin2xcsc2x1\dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}}
We know that,
sin2x+cos2x=1 cos2x=1sin2x   {\sin ^2}x + {\cos ^2}x = 1 \\\ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x \;
And
csc2xcot2x=1 csc2x1=cot2x   {\csc ^2}x - {\cot ^2}x = 1 \\\ \Rightarrow {\csc ^2}x - 1 = {\cot ^2}x \;
Using the above two values in the given expression, we get –
1sin2xcsc2x1=cos2xcot2x\dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = \dfrac{{{{\cos }^2}x}}{{{{\cot }^2}x}}
Now, cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}
So,
1sin2xcsc2x1=cos2xcos2xsin2x=cos2x×sin2xcos2x 1sin2xcsc2x1=sin2x   \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = \dfrac{{{{\cos }^2}x}}{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}} = {\cos ^2}x \times \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} \\\ \Rightarrow \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = {\sin ^2}x \;
Hence, the simplified form of 1sin2xcsc2x1\dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} is sin2x{\sin ^2}x
So, the correct answer is “ sin2x{\sin ^2}x ”.

Note : We can solve this question by one more method as shown below –
We know that cscx=1sinx\csc x = \dfrac{1}{{\sin x}}
Using this value in the above equation, we get –
1sin2xcsc2x1=1sin2x1sin2x1=1sin2x1sin2xsin2x=1sin2x×sin2x1sin2x\dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = \dfrac{{1 - {{\sin }^2}x}}{{\dfrac{1}{{{{\sin }^2}x}} - 1}} = \dfrac{{1 - {{\sin }^2}x}}{{\dfrac{{1 - {{\sin }^2}x}}{{{{\sin }^2}x}}}} = 1 - {\sin ^2}x \times \dfrac{{{{\sin }^2}x}}{{1 - {{\sin }^2}x}}
Now the term 1sin2x1 - {\sin ^2}x is common in both the numerator and the denominator, so we cancel it out as follows –
1sin2xcsc2x1=sin2x\Rightarrow \dfrac{{1 - {{\sin }^2}x}}{{{{\csc }^2}x - 1}} = {\sin ^2}x