Solveeit Logo

Question

Question: How do you use the double angle or half angle formula to simplify \(2\sin 35{}^\circ \cos 35{}^\circ...

How do you use the double angle or half angle formula to simplify 2sin35cos352\sin 35{}^\circ \cos 35{}^\circ .

Explanation

Solution

To solve the above question we will use the concept of trigonometric identities. We will use the formula sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta and 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right) to solve the above question. When we use the formula sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta , then θ=35\theta =35{}^\circ which we get after comparing from equation 2sin35cos352\sin 35{}^\circ \cos 35{}^\circ . So, we can write the above equation as sin(2×35)=2sin35cos35\sin \left( 2\times 35{}^\circ \right)=2\sin 35{}^\circ \cos 35{}^\circ
sin(2×35)=2sin35cos35\Rightarrow \sin \left( 2\times 35{}^\circ \right)=2\sin 35{}^\circ \cos 35{}^\circ
2sin35cos35=sin70\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ

Complete step-by-step solution:
We will use the concept of the trigonometric identities to solve the above question. We will use the formula sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta and 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right) to solve the above question.
We will compare 2sinθcosθ2\sin \theta \cos \theta with the 2sin35cos352\sin 35{}^\circ \cos 35{}^\circ , then we will get θ=35\theta =35{}^\circ .
Since, we know that sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta , so when we put θ=35\theta =35{}^\circ , we will get:
sin2θ=2sinθcosθ\Rightarrow \sin 2\theta =2\sin \theta \cos \theta
So, when θ=35\theta =35{}^\circ we will get:
sin2×35=2sin35cos35\Rightarrow \sin 2\times 35{}^\circ =2\sin 35{}^\circ \cos 35{}^\circ
2sin35cos35=sin70\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ
So, we can say that the simplified form of 2sin35cos352\sin 35{}^\circ \cos 35{}^\circ is equal to sin70\sin 70{}^\circ .
Now, we can also solve the above question alternatively using the formula 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right).
When we compare 2sin35cos352\sin 35{}^\circ \cos 35{}^\circ with 2sinAcosB2\sin A\cos B, then we will get:
A=35,B=35A=35{}^\circ ,B=35{}^\circ
Now, we know that 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right). So, after putting the value of A and B in the above equation we will get:
2sin35cos35=sin(35+35)+sin(3535)\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin \left( 35{}^\circ +35{}^\circ \right)+\sin \left( 35{}^\circ -35{}^\circ \right)
Now, after simplifying we will get:
2sin35cos35=sin70+sin0\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ +\sin 0{}^\circ
Now, we know that value of sin0=0\sin 0{}^\circ =0.
So, the value of 2sin35cos35=sin70+02\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ +0
2sin35cos35=sin70\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ
This is our required solution.

Note: Students are required to note that when they are solving trigonometry questions then they must revise and first memorize the trigonometric formulas otherwise they will not be able to solve the question especially when they have to prove or simplify any trigonometric expression.