Solveeit Logo

Question

Question: How do you use the double-angle identities to find \(\cot \left( 2x \right)\) if \(\cos x=-\dfrac{15...

How do you use the double-angle identities to find cot(2x)\cot \left( 2x \right) if cosx=1517\cos x=-\dfrac{15}{17} and cosecx\cos ecx is less than 0?

Explanation

Solution

We first take the identity theorem cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1. From the given value of cosx=1517\cos x=-\dfrac{15}{17}, we find the value of sinx\sin x. Then we use the theorem for the ratio cot(x)=cosxsinx\cot \left( x \right)=\dfrac{\cos x}{\sin x}. We use multiple angle formulas for cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 and sin2x=2sinxcosx\sin 2x=2\sin x\cos x. We put the values and find the solution for cot(2x)\cot \left( 2x \right).

Complete step by step answer:
We have to find the solution for cot(2x)\cot \left( 2x \right).
We know that the ratio can be broken into sinx\sin x and cosx\cos x where cot(x)=cosxsinx\cot \left( x \right)=\dfrac{\cos x}{\sin x}.
The value of cosx\cos x is given where cosx=1517\cos x=-\dfrac{15}{17}. We are going to use the identity theorem
cos2x+sin2x=1\Rightarrow {{\cos }^{2}}x+{{\sin }^{2}}x=1.

(1517)2+sin2x=1 sin2x=1225289=64289 sinx=±817 \Rightarrow {{\left( -\dfrac{15}{17} \right)}^{2}}+{{\sin }^{2}}x=1 \\\ \Rightarrow {{\sin }^{2}}x=1-\dfrac{225}{289}=\dfrac{64}{289} \\\ \Rightarrow \sin x=\pm \dfrac{8}{17} \\\

Now it’s given that cosecx\cos ecx is less than 0. We know that cosecx=1sinx\cos ecx=\dfrac{1}{\sin x}.
This means the signs of sinx\sin x and cosecx\cos ecx will be negative for both.
Therefore, we will omit the positive value for sinx\sin x. The value will be sinx=817\sin x=-\dfrac{8}{17}.
We have values for both sinx\sin x and cosx\cos x.
Now we use the theorems of multiple angles to find the values for sin2x\sin 2x and cos2x\cos 2x.
We know cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 and sin2x=2sinxcosx\sin 2x=2\sin x\cos x.
Substituting the values, we get
cos2x=2(1517)21=4502891=161289\cos 2x=2{{\left( -\dfrac{15}{17} \right)}^{2}}-1=\dfrac{450}{289}-1=\dfrac{161}{289}
For sin2x=2sinxcosx\sin 2x=2\sin x\cos x, we get
sin2x=2(1517)(817)=240289\sin 2x=2\left( -\dfrac{15}{17} \right)\left( -\dfrac{8}{17} \right)=\dfrac{240}{289}.
Now we find the relation,
cot(2x)=cos2xsin2x\cot \left( 2x \right)=\dfrac{\cos 2x}{\sin 2x}
We put the values and get
cot(2x)=161/289240/289=161240\cot \left( 2x \right)=\dfrac{{}^{161}/{}_{289}}{{}^{240}/{}_{289}}=\dfrac{161}{240}

Therefore, the value for cot(2x)\cot \left( 2x \right) is 161240\dfrac{161}{240}.

Note: We need to remember that the solution for quadratic root will always give two values being positive and negative. The signs of sinx\sin x and cosecx\cos ecx in any case remain the same as they are connected by inverse law. That’s why we had to omit the positive value for signs of sinx\sin x.