Solveeit Logo

Question

Question: How do you use the Binomial Theorem to expand \({{\left( 5x+2y \right)}^{6}}\) ?...

How do you use the Binomial Theorem to expand (5x+2y)6{{\left( 5x+2y \right)}^{6}} ?

Explanation

Solution

To expand (5x+2y)6{{\left( 5x+2y \right)}^{6}} , we will use Binomial Theorem which states that (a+b)n=r=0nnCranrbr{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}} , where nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!} . By using this theorem, we can write (5x+2y)6=r=066Cr(5x)6r(2y)r{{\left( 5x+2y \right)}^{6}}=\sum\limits_{r=0}^{6}{^{6}{{C}_{r}}{{\left( 5x \right)}^{6-r}}{{\left( 2y \right)}^{r}}} . First, we have to expand the summation and then apply nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!} . On further simplification, we will get the required answer.

Complete step-by-step solution:
We need to expand (5x+2y)6{{\left( 5x+2y \right)}^{6}} using Binomial Theorem. Let us see what Binomial Theorem is. Binomial Theorem states that
(a+b)n=r=0nnCranrbr...(i){{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}...(i) , where nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}
We are given that (5x+2y)6{{\left( 5x+2y \right)}^{6}} . When we compare this with the Binomial Theorem, we can see that a=5x,b=2y,n=6a=5x,b=2y,n=6 . Now, let us substitute these values in (i). We will get
(5x+2y)6=r=066Cr(5x)6r(2y)r{{\left( 5x+2y \right)}^{6}}=\sum\limits_{r=0}^{6}{^{6}{{C}_{r}}{{\left( 5x \right)}^{6-r}}{{\left( 2y \right)}^{r}}}
Let us expand this.
(5x+2y)6=6C0(5x)60(2y)0+6C1(5x)61(2y)1+6C2(5x)62(2y)2+6C3(5x)63(2y)3+6C4(5x)64(2y)4+6C5(5x)65(2y)5+6C6(5x)66(2y)6{{\left( 5x+2y \right)}^{6}}{{=}^{6}}{{C}_{0}}{{\left( 5x \right)}^{6-0}}{{\left( 2y \right)}^{0}}{{+}^{6}}{{C}_{1}}{{\left( 5x \right)}^{6-1}}{{\left( 2y \right)}^{1}}{{+}^{6}}{{C}_{2}}{{\left( 5x \right)}^{6-2}}{{\left( 2y \right)}^{2}}{{+}^{6}}{{C}_{3}}{{\left( 5x \right)}^{6-3}}{{\left( 2y \right)}^{3}}{{+}^{6}}{{C}_{4}}{{\left( 5x \right)}^{6-4}}{{\left( 2y \right)}^{4}}{{+}^{6}}{{C}_{5}}{{\left( 5x \right)}^{6-5}}{{\left( 2y \right)}^{5}}{{+}^{6}}{{C}_{6}}{{\left( 5x \right)}^{6-6}}{{\left( 2y \right)}^{6}}
Let us simplify this further.
(5x+2y)6=6C0(5x)6+6C1(5x)52y+6C2(5x)4(2y)2+6C3(5x)3(2y)3+6C4(5x)2(2y)4+6C55x(2y)5+6C6(5x)0(2y)6{{\left( 5x+2y \right)}^{6}}{{=}^{6}}{{C}_{0}}{{\left( 5x \right)}^{6}}{{+}^{6}}{{C}_{1}}{{\left( 5x \right)}^{5}}2y{{+}^{6}}{{C}_{2}}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}{{+}^{6}}{{C}_{3}}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}{{+}^{6}}{{C}_{4}}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}{{+}^{6}}{{C}_{5}}5x{{\left( 2y \right)}^{5}}{{+}^{6}}{{C}_{6}}{{\left( 5x \right)}^{0}}{{\left( 2y \right)}^{6}}We know that nC0=1,nC1=n^{n}{{C}_{0}}=1{{,}^{n}}{{C}_{1}}=n and nCn=1^{n}{{C}_{n}}=1 . Let us use these values in the above expansion.
(5x+2y)6=(5x)6+6(5x)52y+6C2(5x)4(2y)2+6C3(5x)3(2y)3+6C4(5x)2(2y)4+6C55x(2y)5+(2y)6{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y{{+}^{6}}{{C}_{2}}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}{{+}^{6}}{{C}_{3}}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}{{+}^{6}}{{C}_{4}}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}{{+}^{6}}{{C}_{5}}5x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}
We know that nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!} . Therefore, we can simplify the above expansion as follows.
(5x+2y)6=(5x)6+6(5x)52y+6!(62)!2!(5x)4(2y)2+6!(63)!3!(5x)3(2y)3+6!(64)!4!(5x)2(2y)4+6!(65)!5!(5x)(2y)5+(2y)6{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6!}{\left( 6-2 \right)!2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6!}{\left( 6-3 \right)!3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6!}{\left( 6-4 \right)!4!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6!}{\left( 6-5 \right)!5!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}
Let us simplify the above form further.
(5x+2y)6=(5x)6+6(5x)52y+6!4!2!(5x)4(2y)2+6!3!3!(5x)3(2y)3+6!2!4!(5x)2(2y)4+6!1!5!(5x)(2y)5+(2y)6{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6!}{4!2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6!}{3!3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6!}{2!4!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6!}{1!5!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}
We know that n!=n×(n1)×(n2)...×1n!=n\times \left( n-1 \right)\times \left( n-2 \right)...\times 1 . Also we can represent any factorial as n!=n×(n1)!n!=n\times \left( n-1 \right)! . Let us solve the above expansion.
(5x+2y)6=(5x)6+6(5x)52y+6×5×4!4!2!(5x)4(2y)2+6×5×4×3!3!3!(5x)3(2y)3+6×5×4!2!4!(5x)2(2y)4+6×5!1!5!(5x)(2y)5+(2y)6{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6\times 5\times 4!}{4!2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6\times 5\times 4\times 3!}{3!3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6\times 5\times 4!}{2!4!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6\times 5!}{1!5!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}
Let us cancel the common terms from numerator and denominator.
(5x+2y)6=(5x)6+6(5x)52y+6×52!(5x)4(2y)2+6×5×43!(5x)3(2y)3+6×52!(5x)2(2y)4+61!(5x)(2y)5+(2y)6{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6\times 5}{2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6\times 5\times 4}{3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6\times 5}{2!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6}{1!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}
Now, let us expand the factorial. We will get
(5x+2y)6=(5x)6+6(5x)52y+6×52×1(5x)4(2y)2+6×5×43×2×1(5x)3(2y)3+6×52×1(5x)2(2y)4+61×5x(2y)5+(2y)6{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6\times 5}{2\times 1}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6\times 5\times 4}{3\times 2\times 1}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6\times 5}{2\times 1}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6}{1}\times 5x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}
We can now cancel the common terms from numerator and denominator.
(5x+2y)6=(5x)6+6(5x)52y+3×5×(5x)4(2y)2+2×5×2(5x)3(2y)3+3×5×(5x)2(2y)4+6×5x(2y)5+(2y)6{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+3\times 5\times {{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+2\times 5\times 2{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+3\times 5\times {{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+6\times 5x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}
On solving the above expansion, we will get
(5x+2y)6=(5x)6+6(5x)52y+15(5x)4(2y)2+20(5x)3(2y)3+15(5x)2(2y)4+30x(2y)5+(2y)6{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+15{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+20{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+15{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+30x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}Let us expand the powers.

& {{\left( 5x+2y \right)}^{6}}=15625{{x}^{6}}+6\times 3125{{x}^{5}}2y+15\times 625{{x}^{4}}4{{y}^{2}}+20\times 125{{x}^{3}}8{{y}^{3}}+15\times 25{{x}^{2}}16{{y}^{4}}+30x32{{y}^{5}}+64{{y}^{6}} \\\ & \Rightarrow {{\left( 5x+2y \right)}^{6}}=15625{{x}^{6}}+37500{{x}^{5}}y+37500{{x}^{4}}{{y}^{2}}+20000{{x}^{3}}{{y}^{3}}+6000{{x}^{2}}{{y}^{4}}+960x{{y}^{5}}+64{{y}^{6}} \\\ \end{aligned}$$ **Hence, the expansion of ${{\left( 5x+2y \right)}^{6}}$ is $$15625{{x}^{6}}+37500{{x}^{5}}y+37500{{x}^{4}}{{y}^{2}}+20000{{x}^{3}}{{y}^{3}}+6000{{x}^{2}}{{y}^{4}}+960x{{y}^{5}}+64{{y}^{6}}$$.** **Note:** Students must be thorough with binomial theorem as they have a chance of making mistakes when writing the formula. They must know standard combination results like $^{n}{{C}_{0}}=1{{,}^{n}}{{C}_{1}}=n$ and $^{n}{{C}_{n}}=1$ to save time. Students must be very careful when doing the mathematical calculations.