Question
Question: How do you use the Binomial Theorem to expand \({{\left( 5x+2y \right)}^{6}}\) ?...
How do you use the Binomial Theorem to expand (5x+2y)6 ?
Solution
To expand (5x+2y)6 , we will use Binomial Theorem which states that (a+b)n=r=0∑nnCran−rbr , where nCr=(n−r)!r!n! . By using this theorem, we can write (5x+2y)6=r=0∑66Cr(5x)6−r(2y)r . First, we have to expand the summation and then apply nCr=(n−r)!r!n! . On further simplification, we will get the required answer.
Complete step-by-step solution:
We need to expand (5x+2y)6 using Binomial Theorem. Let us see what Binomial Theorem is. Binomial Theorem states that
(a+b)n=r=0∑nnCran−rbr...(i) , where nCr=(n−r)!r!n!
We are given that (5x+2y)6 . When we compare this with the Binomial Theorem, we can see that a=5x,b=2y,n=6 . Now, let us substitute these values in (i). We will get
(5x+2y)6=r=0∑66Cr(5x)6−r(2y)r
Let us expand this.
(5x+2y)6=6C0(5x)6−0(2y)0+6C1(5x)6−1(2y)1+6C2(5x)6−2(2y)2+6C3(5x)6−3(2y)3+6C4(5x)6−4(2y)4+6C5(5x)6−5(2y)5+6C6(5x)6−6(2y)6
Let us simplify this further.
(5x+2y)6=6C0(5x)6+6C1(5x)52y+6C2(5x)4(2y)2+6C3(5x)3(2y)3+6C4(5x)2(2y)4+6C55x(2y)5+6C6(5x)0(2y)6We know that nC0=1,nC1=n and nCn=1 . Let us use these values in the above expansion.
(5x+2y)6=(5x)6+6(5x)52y+6C2(5x)4(2y)2+6C3(5x)3(2y)3+6C4(5x)2(2y)4+6C55x(2y)5+(2y)6
We know that nCr=(n−r)!r!n! . Therefore, we can simplify the above expansion as follows.
(5x+2y)6=(5x)6+6(5x)52y+(6−2)!2!6!(5x)4(2y)2+(6−3)!3!6!(5x)3(2y)3+(6−4)!4!6!(5x)2(2y)4+(6−5)!5!6!(5x)(2y)5+(2y)6
Let us simplify the above form further.
(5x+2y)6=(5x)6+6(5x)52y+4!2!6!(5x)4(2y)2+3!3!6!(5x)3(2y)3+2!4!6!(5x)2(2y)4+1!5!6!(5x)(2y)5+(2y)6
We know that n!=n×(n−1)×(n−2)...×1 . Also we can represent any factorial as n!=n×(n−1)! . Let us solve the above expansion.
(5x+2y)6=(5x)6+6(5x)52y+4!2!6×5×4!(5x)4(2y)2+3!3!6×5×4×3!(5x)3(2y)3+2!4!6×5×4!(5x)2(2y)4+1!5!6×5!(5x)(2y)5+(2y)6
Let us cancel the common terms from numerator and denominator.
(5x+2y)6=(5x)6+6(5x)52y+2!6×5(5x)4(2y)2+3!6×5×4(5x)3(2y)3+2!6×5(5x)2(2y)4+1!6(5x)(2y)5+(2y)6
Now, let us expand the factorial. We will get
(5x+2y)6=(5x)6+6(5x)52y+2×16×5(5x)4(2y)2+3×2×16×5×4(5x)3(2y)3+2×16×5(5x)2(2y)4+16×5x(2y)5+(2y)6
We can now cancel the common terms from numerator and denominator.
(5x+2y)6=(5x)6+6(5x)52y+3×5×(5x)4(2y)2+2×5×2(5x)3(2y)3+3×5×(5x)2(2y)4+6×5x(2y)5+(2y)6
On solving the above expansion, we will get
(5x+2y)6=(5x)6+6(5x)52y+15(5x)4(2y)2+20(5x)3(2y)3+15(5x)2(2y)4+30x(2y)5+(2y)6Let us expand the powers.