Solveeit Logo

Question

Question: How do you use the binomial theorem to expand \({{\left( 2x-1 \right)}^{4}}\)?...

How do you use the binomial theorem to expand (2x1)4{{\left( 2x-1 \right)}^{4}}?

Explanation

Solution

Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.

Formula used:
(x+y)n=i=0nnCixniyi{{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}},
where x and y are real numbers and n is a positive integer (a natural number).
nCi=n!i!(ni)!{}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}

Complete step by step answer:
Let us first understand what is the binomial theorem.Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression (x+y)n{{(x+y)}^{n}}, where x and y are real numbers and n is a positive integer (a natural number).

Then, the binomial expansion of the above expression is given as
(x+y)n=i=0nnCixniyi{{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that (x+y)n=nC0xn0y0+nC1xn1y1+nC2xn2y2+.......+nCn1xn(n1)yn1+nCnxnnyn{{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}.
In the given question, n=4n=4,
Therefore, the given expression can expanded, with the help of binomial theorem as
(2x1)4=4C0(2x)40(1)0+4C1(2x)41(1)1+4C2(2x)42(1)2+4C3(2x)43(1)3+4C4(2x)44(1)4{{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4-0}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{4-1}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{4-2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{4-3}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{4-4}}{{(-1)}^{4}}
This equation can be further simplified to
(2x1)4=4C0(2x)4(1)0+4C1(2x)3(1)1+4C2(2x)2(1)2+4C3(2x)1(1)3+4C4(2x)0(1)4{{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{3}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{1}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{0}}{{(-1)}^{4}}
(2x1)4=4C0(16x4)4C1(8x3)+4C2(4x2)4C3(2x)+4C4(1)\Rightarrow {{(2x-1)}^{4}}={}^{4}{{C}_{0}}(16{{x}^{4}})-{}^{4}{{C}_{1}}(8{{x}^{3}})+{}^{4}{{C}_{2}}(4{{x}^{2}})-{}^{4}{{C}_{3}}(2x)+{}^{4}{{C}_{4}}(1) ….. (i)
Now, we shall use the formula nCi=n!i!(ni)!{}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}

Therefore, equation (i) can be simplified to
(2x1)4=4!0!(40)!(16x4)4!1!(41)!(8x3)+4!2!(42)!(4x2)4!3!(43)!(2x)+4!4!(44)!(1){{(2x-1)}^{4}}=\dfrac{4!}{0!(4-0)!}(16{{x}^{4}})-\dfrac{4!}{1!(4-1)!}(8{{x}^{3}})+\dfrac{4!}{2!(4-2)!}(4{{x}^{2}})-\dfrac{4!}{3!(4-3)!}(2x)+\dfrac{4!}{4!(4-4)!}(1)
With this, we get that
(2x1)4=(1)(16x4)4!1!3!(8x3)+4!2!2!(4x2)4!3!1!(2x)+4!4!0!(1){{(2x-1)}^{4}}=(1)(16{{x}^{4}})-\dfrac{4!}{1!3!}(8{{x}^{3}})+\dfrac{4!}{2!2!}(4{{x}^{2}})-\dfrac{4!}{3!1!}(2x)+\dfrac{4!}{4!0!}(1)
(2x1)4=16x4(4)8x3+(4×32)(4x2)(4)(2x)+(1)\Rightarrow {{(2x-1)}^{4}}=16{{x}^{4}}-(4)8{{x}^{3}}+\left( \dfrac{4\times 3}{2} \right)(4{{x}^{2}})-(4)(2x)+(1)
Finally,
(2x1)4=16x432x3+24x28x+1\therefore {{(2x-1)}^{4}}=16{{x}^{4}}-32{{x}^{3}}+24{{x}^{2}}-8x+1
Hence, we found the expansion of the given expression with the help of binomial theorem.

Note: when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination nCi{}^{n}{{C}_{i}}, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).