Solveeit Logo

Question

Question: How do you use the binomial theorem to calculate \[{}^8{C_5}\] ?...

How do you use the binomial theorem to calculate 8C5{}^8{C_5} ?

Explanation

Solution

Hint : To find the value of the 8C5{}^8{C_5} term we use the formula binomial expansion and the formula is given as (a+b)n=nC0anb0+nC1an1b1+nC2an2b2+...+nCna0bn{(a + b)^n} = {}^n{C_0}{a^n}{b^0} + {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} + ... + {}^n{C_n}{a^0}{b^n} . We apply the binomial expansion where n is 8 and we have to find the 8C5{}^8{C_5} . Hence we obtain the solution.

Complete step by step solution:
To solve this question, we use the formula of binomial expansion and after that we use a factorial formula to solve further. Let us consider (x+1)8{(x + 1)^8} to be the term to which we are applying the formula of binomial expansion.
Now we apply binomial expansion to (x+1)8{\left( {x + 1} \right)^8}
Here we have n = 8 a=xa = x and b=1b = 1 . Substituting all the values in the formula (a+b)n=nC0anb0+nC1an1b1+nC2an2b2+...+nCna0bn{(a + b)^n} = {}^n{C_0}{a^n}{b^0} + {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} + ... + {}^n{C_n}{a^0}{b^n}
So we have

(x+1)8=8C0(x)8(1)0+8C1(x)81(1)1+8C2(x)82(1)2 \+8C3(x)83(1)3+8C4(x)84(1)4+8C5(x)85(1)5 \+8C6(x)86(1)6+8C7(x)87(1)7+8C8(x)88(1)8   {\left( {x + 1} \right)^8} = {}^8{C_0}{\left( x \right)^8}{\left( 1 \right)^0} + {}^8{C_1}{\left( x \right)^{8 - 1}}{\left( 1 \right)^1} + {}^8{C_2}{\left( x \right)^{8 - 2}}{\left( 1 \right)^2} \\\ \+ {}^8{C_3}{\left( x \right)^{8 - 3}}{\left( 1 \right)^3} + {}^8{C_4}{\left( x \right)^{8 - 4}}{\left( 1 \right)^4} + {}^8{C_5}{\left( x \right)^{8 - 5}}{\left( 1 \right)^5} \\\ \+ {}^8{C_6}{\left( x \right)^{8 - 6}}{\left( 1 \right)^6} + {}^8{C_7}{\left( x \right)^{8 - 7}}{\left( 1 \right)^7} + {}^8{C_8}{\left( x \right)^{8 - 8}}{\left( 1 \right)^8} \;

We know the formula nCr=n!(nr)!r!{}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}} and we use this formula to simplify the terms and so we have

(x+1)8=x8+8!7!(x)7+8!6!2!(x)6+8!5!3!(x)5 \+8!4!4!(x)4+8!5!3!(x)3+8!6!2!(x)2+8!7!1!(x)+1   \Rightarrow {\left( {x + 1} \right)^8} = {x^8} + \dfrac{{8!}}{{7!}}{\left( x \right)^7} + \dfrac{{8!}}{{6!2!}}{\left( x \right)^6} + \dfrac{{8!}}{{5!3!}}{\left( x \right)^5} \\\ \+ \dfrac{{8!}}{{4!4!}}{\left( x \right)^4} + \dfrac{{8!}}{{5!3!}}{\left( x \right)^3} + \dfrac{{8!}}{{6!2!}}{\left( x \right)^2} + \dfrac{{8!}}{{7!1!}}\left( x \right) + 1 \;

Here we have to find the value of 8C5{}^8{C_5}
So in the above expansion it is given as
8C5=8!5!3!\Rightarrow {}^8{C_5} = \dfrac{{8!}}{{5!3!}}
By simplifying we have
For the simplification we need n factorial formula since we factorial therefore the formula is n!=n×(n1)×(n2)×...×2×1n! = n \times (n - 1) \times (n - 2) \times ... \times 2 \times 1 by using this formula we calculate the factorial terms and we have
8C5=8×7×6×5×4×3×2×1(5×4×3×2×1)(3×2×1)\Rightarrow {}^8{C_5} = \dfrac{{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{(5 \times 4 \times 3 \times 2 \times 1)(3 \times 2 \times 1)}}
Now divide the similar terms in the both numerator and denominator. So divide 5×4×3×2×15 \times 4 \times 3 \times 2 \times 1 both in denominator and denominator we get
8C5=8×7×63×2×1\Rightarrow {}^8{C_5} = \dfrac{{8 \times 7 \times 6}}{{3 \times 2 \times 1}}
On simplifying we get
8C5=8×7\Rightarrow {}^8{C_5} = 8 \times 7
On multiplying 8 and 7 we get
8C5=56\Rightarrow {}^8{C_5} = 56
Hence, we have found the value of 8C5{}^8{C_5} by using the binomial theorem.
So, the correct answer is “56”.

Note : Here in this type of question we have considered one example of a binomial equation and determined the value of 8C5{}^8{C_5} . We can also determine the value by using formula. since they have given us a binomial equation. so we have considered the example. The C represents the combination and it is formulated as nCr=n!(nr)!r!{}^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}} .