Solveeit Logo

Question

Question: How do you use the binomial series to expand \[{(x + 2)^7}\] ?...

How do you use the binomial series to expand (x+2)7{(x + 2)^7} ?

Explanation

Solution

First, we need to know about the relation between binomial expansion and Pascal’s triangle. The word binomial stands for expressions having two terms. For example: (1+x)(1 + x) , (x+y)(x + y) and etc.
Pascal triangle is an arrangement of the numbers nCr{}^n{C_r} in a triangular form.
Binomial expansion of (a+b)n{(a + b)^n} is
(a+b)n=nC0anbo+nC1an1b1++nCranrbr++nCna0bn{(a + b)^n} = {}^n{C_0}{a^n}{b^o} + {}^n{C_1}{a^{n - 1}}{b^1} + \cdots + {}^n{C_r}{a^{n - r}}{b^r} + \cdots + {}^n{C_n}{a^0}{b^n} .
For example, from the fifth row we can write down the expansion of (a+b)4{(a + b)^4} and from the sixth row we can write down the expansion of (a+b)5{(a + b)^5} and so on. We know the terms (without coefficients) of (a+b)5{(a + b)^5} are:
a5,a4b,a3b2,a2b3,ab4,b5{a^5},{a^4}b,{a^3}{b^2},{a^2}{b^3},a{b^4},{b^5}
The two variable’s power adding them together
And the sixth row of the Pascal triangle is
11 55 1010 1010 55 11
Using these two we can write
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5{(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}

Complete step-by-step solution:
The given binomial expansion is (x+2)7{(x + 2)^7} .
Let consider, a=xa = x and b=2b = 2
n=7n = 7
The seventh row of Pascal triangle is
11 77 2121 3535 3535 2121 77 11
The terms (without coefficients) of (a+b)7{(a + b)^7}
a7,a6b,a5b2,a4b3,a3b4,a2b5,ab6,b7{a^7},{a^6}b,{a^5}{b^2},{a^4}{b^3},{a^3}{b^4},{a^2}{b^5},a{b^6},{b^7}
The two variable’s power adding them together
Using the two, we can write,
(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7{(a + b)^7} = {a^7} + 7{a^6}b + 21{a^5}{b^2} + 35{a^4}{b^3} + 35{a^3}{b^4} + 21{a^2}{b^5} + 7a{b^6} + {b^7}
Then aa and bb value substituting xx and 77 respectively in the equation of (a+b)7{(a + b)^7}
This can be applied
(x+2)7=x7+7x6(2)+21x5(2)2+35x4(2)3+35x3(2)4+21x2(2)5+7x(2)6+(2)7{(x + 2)^7} = {x^7} + 7{x^6}(2) + 21{x^5}{(2)^2} + 35{x^4}{(2)^3} + 35{x^3}{(2)^4} + 21{x^2}{(2)^5} + 7x{(2)^6} + {(2)^7}
Now, we have to find the value of every required power of (2)(2) . For example, (2)2=2×2=4{(2)^2} = 2 \times 2 = 4
And finding every power of values,
(x+2)7=x7+7x6(2)+21x5(4)+35x4(8)+35x3(16)+21x2(32)+7x(64)+(128){(x + 2)^7} = {x^7} + 7{x^6}(2) + 21{x^5}(4) + 35{x^4}(8) + 35{x^3}(16) + 21{x^2}(32) + 7x(64) + (128)
Now we will multiply the coefficient of xx by the power of (2)(2) values.
7x6(2)=7×2x6=14x67{x^6}(2) = 7 \times 2{x^6} = 14{x^6}
21x5(2)2=21×4x5=84x521{x^5}{(2)^2} = 21 \times 4{x^5} = 84{x^5}
35x4(2)3=35×8x4=280x435{x^4}{(2)^3} = 35 \times 8{x^4} = 280{x^4}
35x3(2)4=35×16x3=560x335{x^3}{(2)^4} = 35 \times 16{x^3} = 560{x^3}
21x2(2)5=21×32x2=672x221{x^2}{(2)^5} = 21 \times 32{x^2} = 672{x^2}
7x(2)6=7×64x=448x7x{(2)^6} = 7 \times 64x = 448x
Now, substituting in the equation, we get,
(x+2)7=x7+14x6+84x5+280x4+560x3+672x2+448x+128{(x + 2)^7} = {x^7} + 14{x^6} + 84{x^5} + 280{x^4} + 560{x^3} + 672{x^2} + 448x + 128

Then, the required (x+2)7{(x + 2)^7} binomial expansion is
(x+2)7=x7+14x6+84x5+280x4+560x3+672x2+448x+128{(x + 2)^7} = {x^7} + 14{x^6} + 84{x^5} + 280{x^4} + 560{x^3} + 672{x^2} + 448x + 128

Note: If nn is any positive integer, then
(a+b)n=nC0anbo+nC1an1b1++nCranrbr++nCna0bn{(a + b)^n} = {}^n{C_0}{a^n}{b^o} + {}^n{C_1}{a^{n - 1}}{b^1} + \cdots + {}^n{C_r}{a^{n - r}}{b^r} + \cdots + {}^n{C_n}{a^0}{b^n}, nNn \in \mathbb{N}
Some cases of binomial theorem,
Replacing bb by (b)( - b), in the binomial expansion of (a+b)n,nN{(a + b)^n},n \in \mathbb{N} , we get
(ab)n=nC0anbonC1an1b1+nC2an2b2+(1)rnCranrbr++(1)nnCna0bn{(a - b)^n} = {}^n{C_0}{a^n}{b^o} - {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} - \cdots + {( - 1)^r}{}^n{C_r}{a^{n - r}}{b^r} + \cdots + {( - 1)^n}{}^n{C_n}{a^0}{b^n}
Observe that the sign +' + ' and ' - ' appear alternately in the binomial expansion of (ab)n{(a - b)^n} .
Replacing aa by 11 and bb by xx , in the binomial expansion of (a+b)n{(a + b)^n} , we get
(1+x)n=nC0+nC1x+nC2x2++nCrxr++nCnxn.{(1 + x)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + \cdots + {}^n{C_r}{x^r} + \cdots + {}^n{C_n}{x^n}.