Solveeit Logo

Question

Question: How do you use the binomial series to expand \(\dfrac{1}{{{{\left( {2 + x} \right)}^5}}}\)?...

How do you use the binomial series to expand 1(2+x)5\dfrac{1}{{{{\left( {2 + x} \right)}^5}}}?

Explanation

Solution

In this type of problem, first recast the expression that we want to expand binomially in the form (1+x)n{\left( {1 + x} \right)^n} and then use the binomial expansion for (1+x)n{\left( {1 + x} \right)^n} to expand it by putting n=5n = - 5 and x=x2x = \dfrac{x}{2}. Then, we will get the binomial expansion of 1(2+x)5\dfrac{1}{{{{\left( {2 + x} \right)}^5}}} for x<2\left| x \right| < 2.
For x>2\left| x \right| > 2, substitute n=5n = - 5 and x=2xx = \dfrac{2}{x} in the binomial expansion for (1+x)n{\left( {1 + x} \right)^n} .
Formula used:
For an arbitrary nn, the binomial expansion for (1+x)n{\left( {1 + x} \right)^n} is given by
1+nx+n(n1)2!x2+n(n1)(n2)3!x3+...1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + ...

Complete step-by-step solution:
Since, we know that for an arbitrary nn, the binomial expansion for (1+x)n{\left( {1 + x} \right)^n} is given by
1+nx+n(n1)2!x2+n(n1)(n2)3!x3+...1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + ...
So, we first recast the expression that we want to expand binomially in the form (1+x)n{\left( {1 + x} \right)^n}.
Here we first use
1(2+x)5=125(1+x2)5\dfrac{1}{{{{\left( {2 + x} \right)}^5}}} = \dfrac{1}{{{2^5}}}{\left( {1 + \dfrac{x}{2}} \right)^{ - 5}}
and then use the binomial expansion for n=5n = - 5 to get
1(2+x)5=125(1+(5)x2+(5)(6)2!(x2)2+(5)(6)(7)3!(x2)3+...)\dfrac{1}{{{{\left( {2 + x} \right)}^5}}} = \dfrac{1}{{{2^5}}}\left( {1 + \left( { - 5} \right)\dfrac{x}{2} + \dfrac{{\left( { - 5} \right)\left( { - 6} \right)}}{{2!}}{{\left( {\dfrac{x}{2}} \right)}^2} + \dfrac{{\left( { - 5} \right)\left( { - 6} \right)\left( { - 7} \right)}}{{3!}}{{\left( {\dfrac{x}{2}} \right)}^3} + ...} \right)
Now, simplify the terms on the right side of the equation by multiplication.
1(2+x)5=132(152x+154x2358x3+...)\Rightarrow \dfrac{1}{{{{\left( {2 + x} \right)}^5}}} = \dfrac{1}{{32}}\left( {1 - \dfrac{5}{2}x + \dfrac{{15}}{4}{x^2} - \dfrac{{35}}{8}{x^3} + ...} \right)
Of course, this infinite series only converges for x2<1\left| {\dfrac{x}{2}} \right| < 1, i.e., 2<x<2 - 2 < x < 2.
If x2>1\left| {\dfrac{x}{2}} \right| > 1, this series will diverge - rendering it useless! What saves the day is that in this case, 2x<1\left| {\dfrac{2}{x}} \right| < 1 and so, we can still get a binomial expansion, but this time we must start from
1(2+x)5=125(1+2x)5\dfrac{1}{{{{\left( {2 + x} \right)}^5}}} = \dfrac{1}{{{2^5}}}{\left( {1 + \dfrac{2}{x}} \right)^{ - 5}}
and continue with the binomial expansion for n=5n = - 5 to get
1(2+x)5=125(1+(5)2x+(5)(6)2!(2x)2+(5)(6)(7)3!(2x)3+...)\dfrac{1}{{{{\left( {2 + x} \right)}^5}}} = \dfrac{1}{{{2^5}}}\left( {1 + \left( { - 5} \right)\dfrac{2}{x} + \dfrac{{\left( { - 5} \right)\left( { - 6} \right)}}{{2!}}{{\left( {\dfrac{2}{x}} \right)}^2} + \dfrac{{\left( { - 5} \right)\left( { - 6} \right)\left( { - 7} \right)}}{{3!}}{{\left( {\dfrac{2}{x}} \right)}^3} + ...} \right)
Now, simplify the terms on the right side of the equation by multiplication.
1(2+x)5=132(110x+60x2280x3+...)\Rightarrow \dfrac{1}{{{{\left( {2 + x} \right)}^5}}} = \dfrac{1}{{32}}\left( {1 - \dfrac{{10}}{x} + \dfrac{{60}}{{{x^2}}} - \dfrac{{280}}{{{x^3}}} + ...} \right)
Final solution: Hence, the binomial expansion 1(2+x)5\dfrac{1}{{{{\left( {2 + x} \right)}^5}}} is 132(152x+154x2358x3+...)\dfrac{1}{{32}}\left( {1 - \dfrac{5}{2}x + \dfrac{{15}}{4}{x^2} - \dfrac{{35}}{8}{x^3} + ...} \right) for x<2\left| x \right| < 2 and 132(110x+60x2280x3+...)\dfrac{1}{{32}}\left( {1 - \dfrac{{10}}{x} + \dfrac{{60}}{{{x^2}}} - \dfrac{{280}}{{{x^3}}} + ...} \right) for x>2\left| x \right| > 2.

Note: One important point to remember is that if the index nn is not a positive integer, the binomial expansion leads to an infinite series. In such a situation, it is important to keep in mind that the infinite binomial series for (1+x)n{\left( {1 + x} \right)^n} converges only if x<1\left| x \right| < 1.