Solveeit Logo

Question

Question: How do you use the binomial series to expand \[{{\left( 1-x \right)}^{\dfrac{1}{3}}}\]?...

How do you use the binomial series to expand (1x)13{{\left( 1-x \right)}^{\dfrac{1}{3}}}?

Explanation

Solution

The terms of the form (a+b)n{{(a+b)}^{n}} are called binomial terms. To simplify these terms, we should know the binomial expansion. For the binomial terms of the form (1+x)n{{\left( 1+x \right)}^{n}}, where n is not a positive integer. These terms are expanded as,
1+nx+n(n1)2!x2+n(n1)(n2)3!x3+n(n1)(n2)(n3)4!x4+......1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+....... We will use this expansion formula to expand the given binomial term.

Complete step-by-step solution:
We are asked to expand the binomial term (1x)13{{\left( 1-x \right)}^{\dfrac{1}{3}}}. As the exponent is not an integer, this term is of the form (1+x)n{{\left( 1+x \right)}^{n}}, here we have x-x at the place of x and n=13n=\dfrac{1}{3}.
We know that the expansion of the binomial term (1+x)n{{\left( 1+x \right)}^{n}} is
1+nx+n(n1)2!x2+n(n1)(n2)3!x3+n(n1)(n2)(n3)4!x4+......1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+\dfrac{n(n-1)\left( n-2 \right)}{3!}{{x}^{3}}+\dfrac{n(n-1)\left( n-2 \right)\left( n-3 \right)}{4!}{{x}^{4}}+......
We can find the expansion of (1x)13{{\left( 1-x \right)}^{\dfrac{1}{3}}} by replacing x by x-x, and substituting n=13n=\dfrac{1}{3} in the above expansion formula, by doing this we get
1+13(x)+13(131)2!(x)2+13(131)(132)3!(x)3+13(131)(132)(133)4!(x)4+......\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{1}{3}-1 \right)\left( \dfrac{1}{3}-2 \right)\left( \dfrac{1}{3}-3 \right)}{4!}{{\left( -x \right)}^{4}}+......
Simplifying the numerators of the above expansion, we get
1+13(x)+13(23)2!(x)2+13(23)(53)3!(x)3+13(23)(53)(83)4!(x)4+......\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2!}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{3!}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{4!}{{\left( -x \right)}^{4}}+......
We know that the values of 1!,2!,3!,4!1!,2!,3!,4! are 1, 2, 6, and 24 respectively. Substituting these values in the denominators of the above expression, we get
1+13(x)+13(23)2(x)2+13(23)(53)6(x)3+13(23)(53)(83)24(x)4+......\Rightarrow 1+\dfrac{1}{3}\left( -x \right)+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{\left( -x \right)}^{2}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{\left( -x \right)}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{\left( -x \right)}^{4}}+......
Simplifying the exponents, we get
113x+13(23)2x213(23)(53)6x3+13(23)(53)(83)24x4+......\Rightarrow 1-\dfrac{1}{3}x+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)}{2}{{x}^{2}}-\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)}{6}{{x}^{3}}+\dfrac{\dfrac{1}{3}\left( \dfrac{-2}{3} \right)\left( \dfrac{-5}{3} \right)\left( \dfrac{-8}{3} \right)}{24}{{x}^{4}}+......
Finally, simplifying both numerators, and denominators of both of the above expression, we get
113x19x2581x310243x4+......\Rightarrow 1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+......
Thus, the binomial expansion of (1x)13{{\left( 1-x \right)}^{\dfrac{1}{3}}} is 113x19x2581x310243x4+......1-\dfrac{1}{3}x-\dfrac{1}{9}{{x}^{2}}-\dfrac{5}{81}{{x}^{3}}-\dfrac{10}{243}{{x}^{4}}+.......

Note: To solve the questions of binomial expansions, we should know the binomial expansions of different expressions. For a general binomial term of the form (a+b)n{{(a+b)}^{n}}, here n is a positive integer. The expansion formula is r=0nnCranrbr\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}}{{a}^{n-r}}{{b}^{r}}. Here, nCr=n!r!(nr)!^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}. We can find the expansion of a binomial term with standard form using the summation form given above.