Solveeit Logo

Question

Question: How do you use the binomial series to expand \({(2 + x)^{11}}\) ?...

How do you use the binomial series to expand (2+x)11{(2 + x)^{11}} ?

Explanation

Solution

Binomial is a polynomial expression having two terms. We have to expand the given binomial expression raised to the power of 1111. For this purpose we have to use the binomial series expansion formula also known as Binomial Theorem. For aa and bb given as any term and nn given as any positive integer, Binomial theorem states,
(a+b)n=r=0nnCranrbr{\left( {a + b} \right)^n} = \sum\nolimits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}}

Formula Used:

(a+b)n=r=0nnCranrbr nCr=n!(nr)!  ×r!  {\left( {a + b} \right)^n} = \sum\nolimits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}} \\\ {}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\; \times r!}} \\\

Complete step by step solution:
We have been given an expression (2+x)11{(2 + x)^{11}} which is a binomial expression (2+x)(2 + x)raised to the power 1111. We have to expand this expression using binomial series (or binomial theorem).
The general formula for expansion of a binomial expression raised to some positive integer power is given as,
(a+b)n=r=0nnCranrbr{\left( {a + b} \right)^n} = \sum\nolimits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}}
The expanded series will contain n+1n + 1 terms and any rth{r^{th}} term of the expanded series will be of the form nCranrbr{}^n{C_r}{a^{n - r}}{b^r}.
On comparing with the given expression we can observe that,
a=2a = 2, b=xb = x and n=11n = 11.
Using the general form of binomial expansion formula we can write the given expression as,
(2+x)11=r=01111Cr211rxr{\left( {2 + x} \right)^{11}} = \sum\nolimits_{r = 0}^{11} {{}^{11}{C_r}{2^{11 - r}}{x^r}}
Now we have to expand the summation. The value of rr varies from 00 to 1111, and correspondingly each term will vary. We can expand the summation as,

r=01111Cr2nrxr =11C02110x0+11C12111x1+11C22112x2+11C32113x3 \+11C42114x4+11C52115x5+11C62116x6+11C72117x7 \+11C82118x8+11C92119x9+11C1021110x10+11C1121111x11  \sum\nolimits_{r = 0}^{11} {{}^{11}{C_r}{2^{n - r}}{x^r}} \\\ = {}^{11}{C_0}{2^{11 - 0}}{x^0} + {}^{11}{C_1}{2^{11 - 1}}{x^1} + {}^{11}{C_2}{2^{11 - 2}}{x^2} + {}^{11}{C_3}{2^{11 - 3}}{x^3} \\\ \+ {}^{11}{C_4}{2^{11 - 4}}{x^4} + {}^{11}{C_5}{2^{11 - 5}}{x^5} + {}^{11}{C_6}{2^{11 - 6}}{x^6} + {}^{11}{C_7}{2^{11 - 7}}{x^7} \\\ \+ {}^{11}{C_8}{2^{11 - 8}}{x^8} + {}^{11}{C_9}{2^{11 - 9}}{x^9} + {}^{11}{C_{10}}{2^{11 - 10}}{x^{10}} + {}^{11}{C_{11}}{2^{11 - 11}}{x^{11}} \\\

We have expanded the given expression using the binomial series expansion.
Now we try to simplify each term. We will use the formula nCr=n!(nr)!  ×r!{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\; \times r!}}.
The expanded series in simplified form becomes,

=11!11!  ×0!211+11!10!  ×1!210x+11!9!  ×2!29x2+11!8!  ×3!28x3 \+11!7!  ×4!27x4+11!6!  ×5!26x5+11!5!  ×6!25x6+11!4!  ×7!24x7 \+11!3!  ×8!23x8+11!2!  ×9!22x9+11!1!  ×10!21x10+11!0!  ×11!20x11 =211+11×210x+55×29x2+165×28x3+330×27x4+462×26x5+462×25x6+330×24x7 \+165×23x8+55×22x9+11×21x10+x11 =2048+11264x+28160x2+42240x3+42240x4+29568x5+14784x6+5280x7+1320x8 \+220x9+22x10+x11  = \dfrac{{11!}}{{11!\; \times 0!}}{2^{11}} + \dfrac{{11!}}{{10!\; \times 1!}}{2^{10}}x + \dfrac{{11!}}{{9!\; \times 2!}}{2^9}{x^2} + \dfrac{{11!}}{{8!\; \times 3!}}{2^8}{x^3} \\\ \+ \dfrac{{11!}}{{7!\; \times 4!}}{2^7}{x^4} + \dfrac{{11!}}{{6!\; \times 5!}}{2^6}{x^5} + \dfrac{{11!}}{{5!\; \times 6!}}{2^5}{x^6} + \dfrac{{11!}}{{4!\; \times 7!}}{2^4}{x^7} \\\ \+ \dfrac{{11!}}{{3!\; \times 8!}}{2^3}{x^8} + \dfrac{{11!}}{{2!\; \times 9!}}{2^2}{x^9} + \dfrac{{11!}}{{1!\; \times 10!}}{2^1}{x^{10}} + \dfrac{{11!}}{{0!\; \times 11!}}{2^0}{x^{11}} \\\ = {2^{11}} + 11 \times {2^{10}}x + 55 \times {2^9}{x^2} + 165 \times {2^8}{x^3} + 330 \times {2^7}{x^4} + 462 \times {2^6}{x^5} + 462 \times {2^5}{x^6} + 330 \times {2^4}{x^7} \\\ \+ 165 \times {2^3}{x^8} + 55 \times {2^2}{x^9} + 11 \times {2^1}{x^{10}} + {x^{11}} \\\ = 2048 + 11264x + 28160{x^2} + 42240{x^3} + 42240{x^4} + 29568{x^5} + 14784{x^6} + 5280{x^7} + 1320{x^8} \\\ \+ 220{x^9} + 22{x^{10}} + {x^{11}} \\\

Thus, we get the expanded series as,

(2+x)11=2048+11264x+28160x2+42240x3+42240x4+29568x5+14784x6+5280x7+1320x8 \+220x9+22x10+x11  {(2 + x)^{11}} = 2048 + 11264x + 28160{x^2} + 42240{x^3} + 42240{x^4} + 29568{x^5} + 14784{x^6} + 5280{x^7} + 1320{x^8} \\\ \+ 220{x^9} + 22{x^{10}} + {x^{11}} \\\

Note: We used the formula for binomial series expansion to find the expanded series of the given expression. The expanded series contains n+1n + 1 terms. For negative powers we have to use different formulas for expansion. If not specified in the question we may not have to calculate the exact coefficients of each term as it may be rigorous to multiply such huge numbers.