Solveeit Logo

Question

Question: How do you use the angle sum or difference identity to find the exact value of \[\tan {195^ \circ }\...

How do you use the angle sum or difference identity to find the exact value of tan195\tan {195^ \circ }?

Explanation

Solution

Hint : To solve this problem, you should know the formula for the addition and difference identity and also you must know how we can divide the θ\theta into the addition form or in the difference form so that we can apply the value in either one of these identities and solve this problem.

Complete step-by-step answer :
Using a different identity we are going to solve this problem. And first let us divide the θ=195\theta = {195^ \circ } into (180+15)(180 + 15) and substituting the value we get,
tan(195)=tan(180+15)\tan ({195^ \circ }) = \tan ({180^ \circ } + {15^ \circ })
We know that, tan(180+θ)=tanθ\tan ({180^ \circ } + \theta ) = \tan \theta and hence the above equation can be written as,
tan(195)=tan15\tan ({195^ \circ }) = \tan {15^ \circ }
Now to apply the difference identity we need to divide θ=15\theta = {15^ \circ } into known θ\theta values, so we have to divide θ=15\theta = 15 into (4530)({45^ \circ } - {30^ \circ }) we get,
tan15=tan(4530)\tan {15^ \circ } = \tan ({45^ \circ } - {30^ \circ })
The formula for the difference identity is,
tan(AB)=tanAtanB1+tanAtanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
tan(4530)=tan45tan301+tan45tan30\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\tan {{45}^ \circ } - \tan {{30}^ \circ }}}{{1 + \tan {{45}^ \circ }\tan {{30}^ \circ }}}
It is mandatory to divide the value of θ\theta into known values and now we can able to solve this problem as we know the value of tan45=1\tan {45^ \circ } = 1 and tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} . Applying the values in the formula we get,
tan(4530)=1131+(1)(13) tan(4530)=3133+13 tan(4530)=313+1   \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + (1)\left( {\dfrac{1}{{\sqrt 3 }}} \right)}} \\\ \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\dfrac{{\sqrt {3}-1 }}{{\sqrt 3 }}}}{{\dfrac{{\sqrt {3}+1 }}{{\sqrt 3 }}}} \\\ \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\sqrt {3}-1 }}{{\sqrt {3}+1}} \;
Taking complex conjugate we get,
tan(4530)=313+1×3131 tan(4530)=(31)2(3)212 tan(4530)=323+12 tan(4530)=4232 tan(4530)=2(23)2 tan(4530)=23 tan(4530)=0.268   \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\\ \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{{{(\sqrt 3 - 1)}^2}}}{{{{(\sqrt 3 )}^2} - {1^2}}} \\\ \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{3 - 2\sqrt 3 + 1}}{2} \\\ \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{4 - 2\sqrt 3 }}{2} \\\ \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{2(2 - \sqrt 3 )}}{2} \\\ \tan ({45^ \circ } - {30^ \circ }) = 2 - \sqrt 3 \\\ \tan ({45^ \circ } - {30^ \circ }) = 0.268 \;
So, the correct answer is “0.268”.

Note : We can also use the addition identity to solve this problem and the formula for addition identity is, cotAcotB1cotAcotB\dfrac{{\cot A\cot B - 1}}{{\cot A\cot B}} . I may give you some more hints that are tan(270θ)=cotθ\tan (270 - \theta ) = \cot \theta . With this you can solve this problem by yourself.
We can solve this problem in both methods. Before applying the formula we have to convert the value of θ\theta into known values, so that it is easy for us to solve this type of problem. Don’t forget to work out the alternative method.