Solveeit Logo

Question

Question: How do you use the angle sum identity to find the exact value of \(\sin 255{}^\circ \)?...

How do you use the angle sum identity to find the exact value of sin255\sin 255{}^\circ ?

Explanation

Solution

In this problem we need to calculate the value of sin255\sin 255{}^\circ by using angle sum identity. For this we will write the given angle 255255{}^\circ as the sum of the two angles which are 225225{}^\circ and 3030{}^\circ . From these we will apply the trigonometric formula sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B. Here we need to calculate the value of both sin225\sin 225{}^\circ and cos225\cos 225{}^\circ . Again, we will write the angle 225225{}^\circ as a sum of 180180{}^\circ and 4545{}^\circ . Now we will apply the same formula sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B to calculate the value of sin225\sin 225{}^\circ and we will use the formula cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B to calculate the value of cos225\cos 225{}^\circ . After calculating the values of sin225\sin 225{}^\circ and cos225\cos 225{}^\circ we will simply calculate the value of sin255\sin 255{}^\circ which is our required value.

Complete step by step answer:
Given that, sin255\sin 255{}^\circ .
Writing the given angle 255255{}^\circ as the sum of the two angles which are 225225{}^\circ and 3030{}^\circ . Mathematically we can write 255=225+30255{}^\circ =225{}^\circ +30{}^\circ . Now the value of sin255\sin 255{}^\circ will be
sin255=sin(225+30)\sin 255{}^\circ =\sin \left( 225{}^\circ +30{}^\circ \right)
We have the trigonometric formula sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B. Applying this formula in the above equation, then we will get
sin255=sin225cos30+cos225sin30...(i)\Rightarrow \sin 255{}^\circ =\sin 225{}^\circ \cos 30{}^\circ +\cos 225{}^\circ \sin 30{}^\circ ...\left( \text{i} \right)
To find the value of sin255\sin 255{}^\circ we need to have the values of sin225\sin 225{}^\circ and cos225\cos 225{}^\circ .
Considering the angle 225225{}^\circ . We can write the given angle 225225{}^\circ as sum of 180180{}^\circ and 4545{}^\circ . Mathematically we can write 225=180+45225{}^\circ =180{}^\circ +45{}^\circ .
Now the value of sin225\sin 225{}^\circ will be
sin225=sin(180+45)\Rightarrow \sin 225{}^\circ =\sin \left( 180{}^\circ +45{}^\circ \right)
Applying the formula sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B in the above equation, then we will get
sin225=sin180cos45+cos180sin45\Rightarrow \sin 225{}^\circ =\sin 180{}^\circ \cos 45{}^\circ +\cos 180{}^\circ \sin 45{}^\circ
We have the values sin45=cos45=12\sin 45{}^\circ =\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}, sin180=0\sin 180{}^\circ =0, cos180=1\cos 180{}^\circ =-1. Substituting these values in the above equation, then we will get
sin225=12\Rightarrow \sin 225{}^\circ =-\dfrac{1}{\sqrt{2}}
Now the value of cos225\cos 225{}^\circ will be
cos225=cos(180+45)\Rightarrow \cos 225{}^\circ =\cos \left( 180{}^\circ +45{}^\circ \right)
Applying the formula cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B in the above equation, then we will get
cos225=cos180cos45sin180sin45\Rightarrow \cos 225{}^\circ =\cos 180{}^\circ \cos 45{}^\circ -\sin 180{}^\circ \sin 45{}^\circ
Applying the known values in the above equation, then we will have
cos225=12\Rightarrow \cos 225{}^\circ =-\dfrac{1}{\sqrt{2}}
Now substituting the values of sin225\sin 225{}^\circ , cos225\cos 225{}^\circ , cos30=32\cos 30{}^\circ =\dfrac{\sqrt{3}}{2} and sin30=12\sin 30{}^\circ =\dfrac{1}{2} in equation (i)\left( \text{i} \right). Then we will get
sin255=(12)(32)+(12)(12) sin255=322122 sin255=3122 \begin{aligned} & \Rightarrow \sin 255{}^\circ =\left( -\dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)+\left( -\dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right) \\\ & \Rightarrow \sin 255{}^\circ =-\dfrac{\sqrt{3}}{2\sqrt{2}}-\dfrac{1}{2\sqrt{2}} \\\ & \Rightarrow \sin 255{}^\circ =\dfrac{-\sqrt{3}-1}{2\sqrt{2}} \\\ \end{aligned}
Hence the value of sin255\sin 255{}^\circ is 3122\dfrac{-\sqrt{3}-1}{2\sqrt{2}}.

Note: In this problem we have calculated the values of sin225\sin 225{}^\circ , cos225\cos 225{}^\circ to find the value of sin255\sin 255{}^\circ . We can use the trigonometric circle to calculate the values of sin225\sin 225{}^\circ , cos225\cos 225{}^\circ then we can easily find the value of sin255\sin 255{}^\circ in one or two steps from the equation (i)\left( \text{i} \right).