Solveeit Logo

Question

Question: How do you use the angle sum identity to find the exact value of \(\cos \left( 285{}^\circ \right)\)...

How do you use the angle sum identity to find the exact value of cos(285)\cos \left( 285{}^\circ \right)?

Explanation

Solution

We will use the trigonometric identities to solve the above question. We will use the formula cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B and cos(360θ)=cosθ\cos \left( 360{}^\circ -\theta \right)=\cos \theta . At first, we will write 285285{}^\circ as
285=36075285{}^\circ =360{}^\circ -75{}^\circ , and then we will use the formula cos(360θ)=cosθ\cos \left( 360{}^\circ -\theta \right)=\cos \theta , then we will get cos(36075)=cos75\cos \left( 360{}^\circ -75{}^\circ \right)=\cos 75{}^\circ . Now, we will write 75=30+4575{}^\circ =30{}^\circ +45{}^\circ and we will use the formula cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B, and then we will write cos(30+45)=cos30cos45sin30sin45\cos \left( 30{}^\circ +45{}^\circ \right)=\cos 30{}^\circ \cos 45{}^\circ -\sin 30{}^\circ \sin 45{}^\circ and since we know the value of cos30,sin30,sin45,cos45\cos 30{}^\circ ,\sin 30{}^\circ ,\sin 45{}^\circ ,\cos 45{}^\circ from the trigonometric table and hence find the value.

Complete step-by-step solution:
We can see that the given question is of trigonometric identities so we will use it to solve the above question. We will first try to convert the angle given into less than 9090{}^\circ and we know their value from the trigonometric table. Then, we will use the trigonometric sum identity of cosine function i.e. cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B.
Since, we can see from the question that 285285{}^\circ is greater than 9090{}^\circ and we also know that it lies in the fourth quadrant. So, we will first convert angle 285285{}^\circ into angle less than 9090{}^\circ by using circular trigonometric function.
So, we can write 285285{}^\circ as 285=36075285{}^\circ =360{}^\circ -75{}^\circ .
Now, we will take cosine both sides, then we will get:
cos(36075)=cos285\Rightarrow \cos \left( 360{}^\circ -75{}^\circ \right)=\cos 285{}^\circ
Since, we know that cos(360θ)=cosθ\cos \left( 360{}^\circ -\theta \right)=\cos \theta , so we will use it, and we will get:
cos(75)=cos285\Rightarrow \cos \left( 75{}^\circ \right)=\cos 285{}^\circ
cos285=cos(75)\Rightarrow \cos 285{}^\circ =\cos \left( 75{}^\circ \right)
Now, we will write 7575{}^\circ as 30+4530{}^\circ +45{}^\circ and use the formula cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B.
cos(75)=cos(30+45)\Rightarrow \cos \left( 75{}^\circ \right)=\cos \left( 30{}^\circ +45{}^\circ \right)
cos(30+45)=cos30cos45sin30sin45\Rightarrow \cos \left( 30{}^\circ +45{}^\circ \right)=\cos 30{}^\circ \cos 45{}^\circ -\sin 30{}^\circ \sin 45{}^\circ
Since, from standard trigonometric table we know the value of cos30=32,sin30=12,sin45=12,cos45=12\cos 30{}^\circ =\dfrac{\sqrt{3}}{2},\sin 30{}^\circ =\dfrac{1}{2},\sin 45{}^\circ =\dfrac{1}{\sqrt{2}},\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}, so we will use them.
cos(75)=32×1212×12\Rightarrow \cos \left( 75{}^\circ \right)=\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\times \dfrac{1}{\sqrt{2}}
cos(75)=322122\Rightarrow \cos \left( 75{}^\circ \right)=\dfrac{\sqrt{3}}{2\sqrt{2}}-\dfrac{1}{2\sqrt{2}}
cos(75)=3122\Rightarrow \cos \left( 75{}^\circ \right)=\dfrac{\sqrt{3}-1}{2\sqrt{2}}
Since, we have seen above that cos(75)=cos285\cos \left( 75{}^\circ \right)=\cos 285{}^\circ
cos(285)=3122\Rightarrow \cos \left( 285{}^\circ \right)=\dfrac{\sqrt{3}-1}{2\sqrt{2}}
**Hence, the value of cos(285)=3122\cos \left( 285{}^\circ \right)=\dfrac{\sqrt{3}-1}{2\sqrt{2}}.
This is our required solution. **

Note: Students are required to memorize the trigonometric formula, trigonometric table and identities otherwise they will not be able to solve the above question. We can also solve the above question writing cos(285)=cos(180+105)\cos \left( 285{}^\circ \right)=\cos \left( 180{}^\circ +105{}^\circ \right) and since we know that formula cos(180+θ)=cosθ\cos \left( 180{}^\circ +\theta \right)=-\cos \theta , so we can write cos(285)=cos(180+105)=cos105\cos \left( 285{}^\circ \right)=\cos \left( 180{}^\circ +105{}^\circ \right)=-\cos 105{}^\circ . Now, we can write cos(105)=cos(60+45)\cos \left( 105{}^\circ \right)=\cos \left( 60{}^\circ +45{}^\circ \right), and then we will use the formula cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B, and write the value using trigonometric table and simplify similarly as done above.