Solveeit Logo

Question

Question: How do you use substitution to integrate \(x\sqrt {2x + 1} dx\)?...

How do you use substitution to integrate x2x+1dxx\sqrt {2x + 1} dx?

Explanation

Solution

We have been given an integration f(x)dx\int {f\left( x \right)dx} . To evaluate the integral using integration by substitution method, we transformed the given integral into another form by changing the independent variable xx into tt by using x=g(t)x = g\left( t \right) such that after the substitution, the given integral is converted into directly known integrals.

Complete step-by-step solution:
Step 1: Given integral is x2x+1dx\int {x\sqrt {2x + 1} dx} . Let us consider that given integration is equal to II, so we get
I=x2x+1dxI = \int {x\sqrt {2x + 1} dx}
Now, we substitute 2x+1=t2x + 1 = t .
Now to replace the value of dxdx, we differentiate the 2x+1=t2x + 1 = t with respect to xx , we get
2dx=dt dx=dt2  2dx = dt \\\ dx = \dfrac{{dt}}{2} \\\
and to replace the value of xx , simplifying the equation , we get
2x=t1 x=t12  \Rightarrow 2x = t - 1 \\\ \Rightarrow x = \dfrac{{t - 1}}{2} \\\
Step 2: Now substituting all the values in the given integral, we get
I=x2x+1dx =(t12)×t×dt2  I = \int {x\sqrt {2x + 1} dx} \\\ = \int {\left( {\dfrac{{t - 1}}{2}} \right)} \times \sqrt t \times \dfrac{{dt}}{2} \\\
Step 3: Now multiplying the brackets, we get I=14(t1+12t12)dtI = \dfrac{1}{4}\int {\left( {{t^{1 + \dfrac{1}{2}}} - {t^{\dfrac{1}{2}}}} \right)} dt
Adding the powers, we get
\Rightarrow$$$I = \dfrac{1}{4}\int {\left( {{t^{\dfrac{3}{2}}} - {t^{\dfrac{1}{2}}}} \right)} dt$$ Step 4: Now integrating the above expression using the standard formula of integration, we get \RightarrowI = \dfrac{1}{4}\left( {\dfrac{{{t^{\dfrac{3}{2} + 1}}}}{{\dfrac{3}{2} + 1}} - \dfrac{{{t^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right) + C$$ Adding the powers in the numerator and adding the numbers in denominator, we get $\RightarrowI = \dfrac{1}{4}\left( {\dfrac{{{t^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}} - \dfrac{{{t^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right) + C$$
Now simplifying the above expression, we get

I=14(2t5252t323)+C I=12(t525t323)+C \Rightarrow I = \dfrac{1}{4}\left( {\dfrac{{2{t^{\dfrac{5}{2}}}}}{5} - \dfrac{{2{t^{\dfrac{3}{2}}}}}{3}} \right) + C \\\ \Rightarrow I = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{5}{2}}}}}{5} - \dfrac{{{t^{\dfrac{3}{2}}}}}{3}} \right) + C \\\

Step 5: Now to get the original integrand, we replace the value of tt .
In the beginning we have consider the value of t=2x+1t = 2x + 1 , so replacing the value of tt , we get
I=12((2x+1)525(2x+1)323)+C\Rightarrow I = \dfrac{1}{2}\left( {\dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{5}{2}}}}}{5} - \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{3}} \right) + C
Taking (2x+1)32{\left( {2x + 1} \right)^{\dfrac{3}{2}}} common from numerator, we get
I=(2x+1)322((2x+1)513)+C\Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{\left( {2x + 1} \right)}}{5} - \dfrac{1}{3}} \right) + C
Step 6: Taking LCM inside the bracket and simplify, we get

I=(2x+1)322(3(2x+1)515)+C I=(2x+1)322(6x+3515)+C I=(2x+1)322(6x215)+C \Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{3\left( {2x + 1} \right) - 5}}{{15}}} \right) + C \\\ \Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{6x + 3 - 5}}{{15}}} \right) + C \\\ \Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{6x - 2}}{{15}}} \right) + C \\\

Now take 22 common from the bracket, we get

I=(2x+1)322(2(3x1)15)+C I=(2x+1)32(3x115)+C \Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{2\left( {3x - 1} \right)}}{{15}}} \right) + C \\\ \Rightarrow I = {\left( {2x + 1} \right)^{\dfrac{3}{2}}}\left( {\dfrac{{3x - 1}}{{15}}} \right) + C \\\

This is the final integration of the given function.

Note: Formula to integrate xn{x^n} is given as
xndx=xn+1n+1+C\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C , where CC is the constant of integration.
It is important to guess the useful substitution function. Choose the substitution function such that its derivative also occurs in the integrand.