Solveeit Logo

Question

Question: How do you use end behaviour, zeroes, y intercepts to sketch the graph of \( f\left( x \right)=\left...

How do you use end behaviour, zeroes, y intercepts to sketch the graph of f(x)=(x4)(x1)(x+3)f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) ?

Explanation

Solution

Hint : We first find the intercepts of the given function f(x)=(x4)(x1)(x+3)f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) which also gives us the roots of the function. Then we use the differentiation to find the extremum points of the function and draw the graph.

Complete step-by-step answer :
We need to find the zeros, y intercepts of the curve f(x)=(x4)(x1)(x+3)f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) .
Here the zeroes mean the x intercepts or the roots of the polynomial.
We put the value of f(x)=0f\left( x \right)=0 and get (x4)(x1)(x+3)=0\left( x-4 \right)\left( x-1 \right)\left( x+3 \right)=0 which gives the roots as
x=3,1,4x=-3,1,4 . The points are (3,0),(1,0),(4,0)\left( -3,0 \right),\left( 1,0 \right),\left( 4,0 \right) .
To find the y intercepts we put the value of x=0x=0 and get f(x)=(04)(01)(0+3)=12f\left( x \right)=\left( 0-4 \right)\left( 0-1 \right)\left( 0+3 \right)=12 which gives the value as the intersecting point of (0,12)\left( 0,12 \right) .
Therefore, to find the extremum points we have to find the first and second order derivatives.
Extremum points in a curve have slope value 0.
The slope of the function f(x)=(x4)(x1)(x+3)f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) can be found from the derivative of the function f(x)=ddx[f(x)]{{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right] .
We differentiate both sides of the function f(x)=(x4)(x1)(x+3)f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) with respect to xx .
f(x)=(x4)(x1)(x+3)=x32x211x+12 f(x)=ddx[f(x)]=3x24x11 \begin{aligned} & f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right)={{x}^{3}}-2{{x}^{2}}-11x+12 \\\ & \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=3{{x}^{2}}-4x-11 \\\ \end{aligned} .
To find the xx coordinates of the extremum point we take 3x24x11=03{{x}^{2}}-4x-11=0 .
In the given equation we have 3x24x11=03{{x}^{2}}-4x-11=0 . The values of a,b,ca,b,c is 3,4,113,-4,-11 respectively.
We put the values and get xx as x=4±424×3×(11)2×3=4±1486=2±373x=\dfrac{4\pm \sqrt{{{4}^{2}}-4\times 3\times \left( -11 \right)}}{2\times 3}=\dfrac{4\pm \sqrt{148}}{6}=\dfrac{2\pm \sqrt{37}}{3} .
Therefore, from the value of the xx coordinates of the extremum points, we find their yy coordinates.
Therefore, the extremum points are x=2±373x=\dfrac{2\pm \sqrt{37}}{3} .

Note : We need to remember that the curve changes its direction on the extremum points only. Other that that the function f(x)=(x4)(x1)(x+3)f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) is an increasing function in the range of x[4,)x\in \left[ 4,\infty \right) and decreasing function in the range of x(,3]x\in \left( -\infty ,-3 \right] .