Solveeit Logo

Question

Question: How do you use double angle formulas to calculate \(\operatorname{Cos} 2x\) and \(\operatorname{Sin}...

How do you use double angle formulas to calculate Cos2x\operatorname{Cos} 2x and Sin2x\operatorname{Sin} 2x without finding xx if Cosx=35\operatorname{Cos} x = \dfrac{3}{5} and xx is in the first quadrant?

Explanation

Solution

Formulas which represent trigonometric functions of an angle 2θ2\theta in the form of a trigonometric function of an angle θ\theta are known as the double angle formulas.
The basic double angle formulas are:
sin(2θ)=2sinθ.cosθ cos(2θ)=cos2θsin2θ tan(2θ)=2tanθ1tan2θ  sin(2\theta ) = 2\sin \theta .\cos \theta \\\ cos(2\theta ) = {\cos ^2}\theta - {\sin ^2}\theta \\\ \tan (2\theta ) = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} \\\

Complete step by step answer:
cosx=35\cos x = \dfrac{3}{5}
Now, we know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
Hence,
sin2x=1cos2x sinx=1cos2x  {\sin ^2}x = 1 - {\cos ^2}x \\\ \sin x = \sqrt {1 - {{\cos }^2}x} \\\
It’s mentioned that xx is in first quadrant, Hence, sinx\sin xandcosx\cos xwill be a positive value.
Now, substituting the values we will get,
sinx=1(35)2 sinx=1925 sinx=25925 sinx=1625=45  \sin x = \sqrt {1 - {{\left( {\dfrac{3}{5}} \right)}^2}} \\\ \sin x = \sqrt {1 - \dfrac{9}{{25}}} \\\ \sin x = \sqrt {\dfrac{{25 - 9}}{{25}}} \\\ \sin x = \sqrt {\dfrac{{16}}{{25}}} = \dfrac{4}{5} \\\
Substituting these values to the double angle formulas, we get,
sin2x=2sinx.cosx sin2x=2.45.35 sin2x=2425  \sin 2x = 2\sin x.\cos x \\\ \sin 2x = 2.\dfrac{4}{5}.\dfrac{3}{5} \\\ \sin 2x = \dfrac{{24}}{{25}} \\\
And
cos2x=cos2xsin2x cos2x=9251625 cos2x=725  \cos 2x = {\cos ^2}x - {\sin ^2}x \\\ \cos 2x = \dfrac{9}{{25}} - \dfrac{{16}}{{25}} \\\ \cos 2x = \dfrac{{ - 7}}{{25}} \\\
Hence, in this way we are able to calculate the value of sin2x\sin 2x and cos2x\cos 2x without finding the value of xx.

Note: The sum and differences of sine and cosine formulas produce double angle and half angle formulas. That is the formula is derived by expanding sin(θ+θ)\sin (\theta + \theta ) and by expanding cos(θ+θ)\cos (\theta + \theta ).