Solveeit Logo

Question

Question: How do you use an integral to find the volume of a solid torus?...

How do you use an integral to find the volume of a solid torus?

Explanation

Solution

Here we will use the fact that a torus is obtained by rotating a circular region about the xx-axis. We will use the washer method to form an expression of obtaining a torus. Finally, we will simplify the expression to get the required answer.

Complete step-by-step answer:
The volume of a torus whose radius of circular cross-section is rr and the radius of the circle traced by the center of the cross-section is RR is given as, V=2π2r2RV = 2{\pi ^2}{r^2}R.
So we have to use integral to get the above value of the volume of a solid torus.
As we know a torus is obtained by rotating the circular region about the x-axis so it can be written as,
x2+(yR)2=r2{x^2} + {\left( {y - R} \right)^2} = {r^2}
Subtracting x2{x^2} from both the sides, we get
(yR)2=r2x2 (yR)=±r2x2\begin{array}{l} \Rightarrow {\left( {y - R} \right)^2} = {r^2} - {x^2}\\\ \Rightarrow \left( {y - R} \right) = \pm \sqrt {{r^2} - {x^2}} \end{array}
Adding RR on both the sides, we get
y=R±r2x2\Rightarrow y = R \pm \sqrt {{r^2} - {x^2}}
So, we have two regions as,
y=R+r2x2y = R + \sqrt {{r^2} - {x^2}} and y=Rr2x2y = R - \sqrt {{r^2} - {x^2}}
As we have two regions in-between which the circular Region is present, so here we can use Washer Method.
According to Washer Method, the volume of the solid of revolution can be expressed as abπ(f2g2)dx=abπ(f2(x))dxabπ(g2(x))dx\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi \left( {{f^2}\left( x \right)} \right)dx} - \int\limits_a^b {\pi \left( {{g^2}\left( x \right)} \right)dx}
Here, y=f(x)y = f\left( x \right)andy=g(x)y = g\left( x \right) are two curves.
In this case we have f(x)=R+r2x2f\left( x \right) = R + \sqrt {{r^2} - {x^2}} and g(x)=Rr2x2g\left( x \right) = R - \sqrt {{r^2} - {x^2}} .
Substituting the above values in the formula abπ(f2g2)dx=abπ(f2(x))dxabπ(g2(x))dx\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi \left( {{f^2}\left( x \right)} \right)dx} - \int\limits_a^b {\pi \left( {{g^2}\left( x \right)} \right)dx} we get,
abπ(f2g2)dx=abπ(R+r2x2)2dxabπ(Rr2x2)2dx\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi {{\left( {R + \sqrt {{r^2} - {x^2}} } \right)}^2}dx} - \int\limits_a^b {\pi {{\left( {R - \sqrt {{r^2} - {x^2}} } \right)}^2}dx}
Substituting the limit of xx from rr to r - r and rrπ(f2g2)dx=V\int\limits_{ - r}^r {\pi \left( {{f^2} - {g^2}} \right)dx} = V, we get
V=rrπ(R+r2x2)2dxrrπ(Rr2x2)2dx\Rightarrow V = \int\limits_{ - r}^r {\pi {{\left( {R + \sqrt {{r^2} - {x^2}} } \right)}^2}dx} - \int\limits_{ - r}^r {\pi {{\left( {R - \sqrt {{r^2} - {x^2}} } \right)}^2}dx}
Simplifying the equation, we get
V=πrr(((R+r2x2)2(Rr2x2)2))dx\Rightarrow V = \pi \int\limits_{ - r}^r {\left( {\left( {{{\left( {R + \sqrt {{r^2} - {x^2}} } \right)}^2} - {{\left( {R - \sqrt {{r^2} - {x^2}} } \right)}^2}} \right)} \right)} dx
Using the algebraic identities, we get
V=πrr(R2+(r2x2)+2×R(r2x2)(R22×R×(r2x2)+(r2x2)))dx\Rightarrow V = \pi \int\limits_{ - r}^r {\left( {{R^2} + \left( {{r^2} - {x^2}} \right) + 2 \times R\left( {{r^2} - {x^2}} \right) - \left( {{R^2} - 2 \times R \times \left( {{r^2} - {x^2}} \right) + \left( {{r^2} - {x^2}} \right)} \right)} \right)} dx
Multiplying the terms, we get
V=πrr(R2+2R(r2x2)+(r2x2)R2+2R(r2x2)(r2x2))dx\Rightarrow V = \pi \int\limits_{ - r}^r {\left( {{R^2} + 2R\left( {{r^2} - {x^2}} \right) + \left( {{r^2} - {x^2}} \right) - {R^2} + 2R\left( {{r^2} - {x^2}} \right) - \left( {{r^2} - {x^2}} \right)} \right)dx}
Adding and subtracting the like terms, we get
V=4πRrr(r2x2)dx\Rightarrow V = 4\pi R\int\limits_{ - r}^r {\left( {{r^2} - {x^2}} \right)dx}
As we can see that above integral is equivalent to the area of a semicircle having radius as rr we get,
V=4πR×12πr2 V=2π2r2R\begin{array}{l} \Rightarrow V = 4\pi R \times \dfrac{1}{2}\pi {r^2}\\\ \Rightarrow V = 2{\pi ^2}{r^2}R\end{array}
As we can see the value we got above is same as the volume of a torus V=2π2r2RV = 2{\pi ^2}{r^2}R, therefore the Volume of solid torus is 2π2r2R2{\pi ^2}{r^2}R.

Note:
A solid torus is a shape formed when we sweep a disk around a circle. We can visualize a solid torus as a toroid embedded in 3-space.
According to the Washer Method: Let us consider a region RR between two curves y=f(x)y = f\left( x \right) and y=g(x)y = g\left( x \right) where both the curves are non-negative and g(x)f(x)g\left( x \right) \le f\left( x \right) for interval from x = a$$$$x = b. So, the volume traced when RR is rotated about the x-axis is given as:
abπ(f2g2)dx=abπ(f2(x))dxabπ(g2(x))dx\int\limits_a^b {\pi \left( {{f^2} - {g^2}} \right)dx} = \int\limits_a^b {\pi \left( {{f^2}\left( x \right)} \right)dx} - \int\limits_a^b {\pi \left( {{g^2}\left( x \right)} \right)dx}