Question
Question: How do you solve \[y'+3y=0\] given \[y\left( 0 \right)=4\]?...
How do you solve y′+3y=0 given y(0)=4?
Solution
In this problem, we have to solve the given differential equation and find the value of y. We can use the first order linear ordinary differential equation and we can derive an integrating factor and we can multiply the integrating factor to the differential equation. We can also solve this problem, by taking one term to the right-hand side and integrating on both sides and simply to solve for y.
Complete step by step answer:
We know that the given differential equation is,
y′+3y=0
We can write the term y’ as dxdy, we get
dxdy+3y=0
Now we can add -3y on both sides, we get
⇒dxdy=−3y
Now we can rearrange the above step by separating the variables, that is treating dxdy as division and getting the y terms on one side and the x terms on the other side, we get
⇒ydy=−3dx
We can now integrate on both the sides, we get