Solveeit Logo

Question

Question: How do you solve \({{x}^{2}}-4x+1=0\) using the quadratic formula?...

How do you solve x24x+1=0{{x}^{2}}-4x+1=0 using the quadratic formula?

Explanation

Solution

We have been given a quadratic equation of x as x24x+1=0{{x}^{2}}-4x+1=0. We use the quadratic formula to solve the value of the x. we have the solution in the form of x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} for general equation of ax2+bx+c=0a{{x}^{2}}+bx+c=0. We put the values and find the solution.

Complete answer:
We know for a general equation of quadratic ax2+bx+c=0a{{x}^{2}}+bx+c=0, the value of the roots of x will be x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}. This is the quadratic equation solving method. The root part b24ac\sqrt{{{b}^{2}}-4ac} of x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} is called the discriminant of the equation.
In the given equation we have x24x+1=0{{x}^{2}}-4x+1=0. The values of a, b, c are 1,4,11,-4,1 respectively.
We put the values and get x as x=(4)±(4)24×1×12×1=4±122=2±3x=\dfrac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\times 1\times 1}}{2\times 1}=\dfrac{4\pm \sqrt{12}}{2}=2\pm \sqrt{3}.
The roots of the equation are irrational numbers.
The discriminant value being non-square, we get the irrational numbers a root value.
In this case the value of D=b24acD=\sqrt{{{b}^{2}}-4ac} is non-square. b24ac=(4)24×1×1=12{{b}^{2}}-4ac={{\left( -4 \right)}^{2}}-4\times 1\times 1=12.
This is a non-square value. That’s why the roots are irrational.

Note: We find the value of x for which the function f(x)=x24x+1f\left( x \right)={{x}^{2}}-4x+1. We can see f(2+3)=(2+3)24(2+3)+1=4+3+43843+1=0f\left( 2+\sqrt{3} \right)={{\left( 2+\sqrt{3} \right)}^{2}}-4\left( 2+\sqrt{3} \right)+1=4+3+4\sqrt{3}-8-4\sqrt{3}+1=0. So, the root of the f(x)=x24x+1f\left( x \right)={{x}^{2}}-4x+1 will be the 2+32+\sqrt{3}. This means for x=ax=a, if f(a)=0f\left( a \right)=0 then (xa)\left( x-a \right) is a root of f(x)f\left( x \right). We can also do the same process for 232-\sqrt{3}.
We can also solve using the square form.
We have x24x+1=(x2)23{{x}^{2}}-4x+1={{\left( x-2 \right)}^{2}}-3.
We get (x2)23=0{{\left( x-2 \right)}^{2}}-3=0. Taking solution, we get
(x2)23=0 (x2)2=3 (x2)=±3 x=2±3 \begin{aligned} & {{\left( x-2 \right)}^{2}}-3=0 \\\ & \Rightarrow {{\left( x-2 \right)}^{2}}=3 \\\ & \Rightarrow \left( x-2 \right)=\pm \sqrt{3} \\\ & \Rightarrow x=2\pm \sqrt{3} \\\ \end{aligned}.
Thus, verified the solution of the equation x24x+1=0{{x}^{2}}-4x+1=0 is x=2±3x=2\pm \sqrt{3}.