Solveeit Logo

Question

Question: How do you solve the system \(x+2y-z=6,-3x-2y+5z=-12,x-2z=3\)?...

How do you solve the system x+2yz=6,3x2y+5z=12,x2z=3x+2y-z=6,-3x-2y+5z=-12,x-2z=3?

Explanation

Solution

We first form the multiplication form of matrices to find the coefficient matrix AX=BAX=B. Then we use the inverse matrix to find the variable matrix with the form of X=A1BX={{A}^{-1}}B. We find the inverse after finding the matrix being singular or not.

Complete step-by-step answer:
We have three unknowns and three equations to solve. We use the matrix multiplication form and its inverse form to solve the variables.
We take 3 matrices A, X, B where they denote the coefficient matrix, variable matrix and solution matrix respectively.
Therefore, A=[121 325 102 ];X=[x y z ];B=[6 12 3 ]A=\left[ \begin{matrix} 1 & 2 & -1 \\\ -3 & -2 & 5 \\\ 1 & 0 & -2 \\\ \end{matrix} \right];X=\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right];B=\left[ \begin{matrix} 6 \\\ -12 \\\ 3 \\\ \end{matrix} \right].
Matrix multiplication form gives AX=BAX=B.
We multiply the equation AX=BAX=B with A1{{A}^{-1}} to get
A1.AX=A1.B IX=X=A1B \begin{aligned} & {{A}^{-1}}.AX={{A}^{-1}}.B \\\ & \Rightarrow IX=X={{A}^{-1}}B \\\ \end{aligned}
The variables matrix will be in the form of X=A1BX={{A}^{-1}}B. We have to multiply the inverse matrix of A with the solution matrix.
The inverse of any matrix A=[aij]A=\left[ {{a}_{ij}} \right] will be A1=adj(A)A{{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}. Here aij{{a}_{ij}} denotes the element of ith{{i}^{th}} row and jth{{j}^{th}} column.
A\left| A \right| is defined as the determinant value of the matrix A.
The adj(A)adj\left( A \right) is defined by the adj(A)=[Aij]T=[Aji]adj\left( A \right)={{\left[ {{A}_{ij}} \right]}^{T}}=\left[ {{A}_{ji}} \right]. Here, Aij{{A}_{ij}} denotes the co-factor of the element aij{{a}_{ij}}. The term ‘T’ denotes the transpose of the matrix.
We find the cofactors of the matrix A and get [Aij]=[412 412 824 ]\left[ {{A}_{ij}} \right]=\left[ \begin{matrix} 4 & -1 & 2 \\\ 4 & -1 & 2 \\\ 8 & -2 & 4 \\\ \end{matrix} \right] which gives
adj(A)=[Aij]T=[Aji]=[448 112 224 ]adj\left( A \right)={{\left[ {{A}_{ij}} \right]}^{T}}=\left[ {{A}_{ji}} \right]=\left[ \begin{matrix} 4 & 4 & 8 \\\ -1 & -1 & -2 \\\ 2 & 2 & 4 \\\ \end{matrix} \right].
Now we find the determinant which is A=1×4+2×(1)+(1)×2=422=0\left| A \right|=1\times 4+2\times \left( -1 \right)+\left( -1 \right)\times 2=4-2-2=0.
As the matrix A is a singular matrix the inverse of the matrix is not possible.
Therefore, the system of equations x+2yz=6,3x2y+5z=12,x2z=3x+2y-z=6,-3x-2y+5z=-12,x-2z=3 have no solutions.

Note: The addition of first two equations x+2yz=6,3x2y+5z=12x+2y-z=6,-3x-2y+5z=-12 give
x+2yz3x2y+5z=612 2x+4z=6 x2z=3 \begin{aligned} & x+2y-z-3x-2y+5z=6-12 \\\ & \Rightarrow -2x+4z=-6 \\\ & \Rightarrow x-2z=3 \\\ \end{aligned}
This is the same as the third equations. Therefore, there is no exact solution for the system of equations.