Solveeit Logo

Question

Question: How do you solve the system of equations: \(2x+6y+3z=5\), \(-2x+2y+z=15\) and \(-3y+4z=9\) ?...

How do you solve the system of equations: 2x+6y+3z=52x+6y+3z=5, 2x+2y+z=15-2x+2y+z=15 and 3y+4z=9-3y+4z=9 ?

Explanation

Solution

We have been given three equations of three planes which have to be solved simultaneously. Each equation consists of three variables, x, y and z. Thus, these equations cannot be solved by simple substitution or elimination. In order to solve three plane equations in 3 variables simultaneously, we shall use the cramer’s rule.

Complete step by step solution:
Given a system of equations: 2x+6y+3z=52x+6y+3z=5, 2x+2y+z=15-2x+2y+z=15 and 3y+4z=9-3y+4z=9
We shall form four different 3×33\times 3 matrices from the given system of equations.
In the first matrix, DD we shall write the coefficients of x, y and z in each column from each of the three equations.
D=[263 221 034 ]D=\left[ \begin{matrix} 2 & 6 & 3 \\\ -2 & 2 & 1 \\\ 0 & -3 & 4 \\\ \end{matrix} \right]
We will calculate the determinant, D\left| D \right| of this matrix by expanding it along the column.
D=2(2×4(3)×1)6((2×4)0×1)+3((2×3)0×2)\Rightarrow \left| D \right|=2\left( 2\times 4-\left( -3 \right)\times 1 \right)-6\left( \left( -2\times 4 \right)-0\times 1 \right)+3\left( \left( -2\times -3 \right)-0\times 2 \right)
D=2(8+3)6(8)+3(6)\Rightarrow \left| D \right|=2\left( 8+3 \right)-6\left( -8 \right)+3\left( 6 \right)
D=22+48+18\Rightarrow \left| D \right|=22+48+18
D=88\Rightarrow \left| D \right|=88
In the second matrix, in column 1, we will write the constant terms of the given equations, in column 2, we will write the coefficients of variable-y of all the equations and in column 3, we shall write the coefficients of variable-z of all the given equations.
Dx=[563 1521 934 ]{{D}_{x}}=\left[ \begin{matrix} 5 & 6 & 3 \\\ 15 & 2 & 1 \\\ 9 & -3 & 4 \\\ \end{matrix} \right]
We will calculate the determinant, Dx\left| {{D}_{x}} \right| of this matrix by expanding it along the column.
Dx=5(2×4(3)×1)6((15×4)9×1)+3((15×3)9×2)\Rightarrow \left| {{D}_{x}} \right|=5\left( 2\times 4-\left( -3 \right)\times 1 \right)-6\left( \left( 15\times 4 \right)-9\times 1 \right)+3\left( \left( 15\times -3 \right)-9\times 2 \right)
Dx=5(8+3)6(609)+3(4518)\Rightarrow \left| {{D}_{x}} \right|=5\left( 8+3 \right)-6\left( 60-9 \right)+3\left( -45-18 \right)
Dx=5(11)6(51)+3(63)\Rightarrow \left| {{D}_{x}} \right|=5\left( 11 \right)-6\left( 51 \right)+3\left( -63 \right)
Dx=55306189\Rightarrow \left| {{D}_{x}} \right|=55-306-189
Dx=440\Rightarrow \left| {{D}_{x}} \right|=-440
In the third matrix, in column 1, we will write the coefficients of variable-x of all the equations in column 2, we will write the constant terms of the given equations, and in column 3, we shall write the coefficients of variable-z of all the given equations.
Dy=[253 2151 094 ]{{D}_{y}}=\left[ \begin{matrix} 2 & 5 & 3 \\\ -2 & 15 & 1 \\\ 0 & 9 & 4 \\\ \end{matrix} \right]
We will calculate the determinant, Dy\left| {{D}_{y}} \right| of this matrix by expanding it along the column.
Dy=2(15×49×1)5((2×4)0×1)+3((2×9)0×15)\Rightarrow \left| {{D}_{y}} \right|=2\left( 15\times 4-9\times 1 \right)-5\left( \left( -2\times 4 \right)-0\times 1 \right)+3\left( \left( -2\times 9 \right)-0\times 15 \right)
Dy=2(609)5(80)+3(180)\Rightarrow \left| {{D}_{y}} \right|=2\left( 60-9 \right)-5\left( -8-0 \right)+3\left( -18-0 \right)
Dy=2(51)5(8)+3(18)\Rightarrow \left| {{D}_{y}} \right|=2\left( 51 \right)-5\left( -8 \right)+3\left( -18 \right)
Dy=102+4054\Rightarrow \left| {{D}_{y}} \right|=102+40-54
Dy=88\Rightarrow \left| {{D}_{y}} \right|=88
In the fourth matrix, in column 1, we will write the coefficients of variable-x of all the equations in column 2, we shall write the coefficients of variable-y of all the given equations and in column 3, we will write the constant terms of the given equations.
Dz=[265 2215 039 ]{{D}_{z}}=\left[ \begin{matrix} 2 & 6 & 5 \\\ -2 & 2 & 15 \\\ 0 & -3 & 9 \\\ \end{matrix} \right]
We will calculate the determinant, Dz\left| {{D}_{z}} \right| of this matrix by expanding it along the column.
Dz=2(2×9(3)×15)6((2×9)0×15)+5((2×3)0×2)\Rightarrow \left| {{D}_{z}} \right|=2\left( 2\times 9-\left( -3 \right)\times 15 \right)-6\left( \left( -2\times 9 \right)-0\times 15 \right)+5\left( \left( -2\times -3 \right)-0\times 2 \right)
Dz=2(18+45)6(180)+5(60)\Rightarrow \left| {{D}_{z}} \right|=2\left( 18+45 \right)-6\left( -18-0 \right)+5\left( 6-0 \right)
Dz=2(63)6(18)+5(6)\Rightarrow \left| {{D}_{z}} \right|=2\left( 63 \right)-6\left( -18 \right)+5\left( 6 \right)
Dz=126+108+30\Rightarrow \left| {{D}_{z}} \right|=126+108+30
Dz=264\Rightarrow \left| {{D}_{z}} \right|=264
Now, the x, y and z-coordinates of intersection of this system of equations are given as
x=DxDx=\dfrac{\left| {{D}_{x}} \right|}{\left| D \right|} , y=DyDy=\dfrac{\left| {{D}_{y}} \right|}{\left| D \right|} and z=DzDz=\dfrac{\left| {{D}_{z}} \right|}{\left| D \right|}.
Substituting the values of these determinants, we get
x=44088\Rightarrow x=\dfrac{-440}{88}
x=5\Rightarrow x=-5
And y=8888y=\dfrac{88}{88}
y=1\Rightarrow y=1
And z=26488z=\dfrac{264}{88}
z=3\Rightarrow z=3

Therefore, the solution of the system of equations: 2x+6y+3z=52x+6y+3z=5, 2x+2y+z=15-2x+2y+z=15 and 3y+4z=9-3y+4z=9 is x=5,y=1x=-5,y=1 and z=3z=3.

Note: We must be careful while performing the calculations of the determinants of the matrices as these calculations are very complex and little ignorance can lead to big calculation errors as a result of which the entire solution might go wrong.