Solveeit Logo

Question

Question: How do you solve the problem \[sin5x - sinx\] using a sum to product formula?...

How do you solve the problem sin5xsinxsin5x - sinx using a sum to product formula?

Explanation

Solution

We will first describe the concept and formula of compound angles for the trigonometric ratio of sin. We use the formula sinasinb=2cos(a+b2)sin(ab2)\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) and formula cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta to minimize and simplify our equation.

Complete answer:
We have given the equation sin5xsinxsin5x - sinx to simplify using sum to product formula.
We will use the formula sinasinb=2cos(a+b2)sin(ab2)\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right) to simplify our term sin5xsinxsin5x - sinx
We have equation
sin5xsinx\Rightarrow sin5x - sinx
We know that sinasinb=2cos(a+b2)sin(ab2)\sin a - \sin b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\sin \left( {\dfrac{{a - b}}{2}} \right)
We will substitute a equal to 5x and b equals to x
sin5xsinx=2cos(5x+x2)sin(5xx2)\Rightarrow sin5x - sinx = 2\cos \left( {\dfrac{{5x + x}}{2}} \right)\sin \left( {\dfrac{{5x - x}}{2}} \right)
sin5xsinx=2cos(3x)sin(2x)\Rightarrow sin5x - sinx = 2\cos \left( {3x} \right)\sin \left( {2x} \right)
We will use the formula and expand cos3x=(4cos3x3cosx)\cos 3x = (4cos3x - 3cosx) and sin2x=(2sinxcosx)\sin 2x = (2sinxcosx)
=2(4cos3x3cosx)(2sinxcosx)= 2(4co{s^3}x - 3cosx)(2sinxcosx)
=4sinxcos2x(4cos2x3)= 4\sin x{\cos ^2}x(4co{s^2}x - 3)
We know that cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta , we will substitute
=4sinx(1sin2x)(4(1sin2x)3)= 4\sin x(1 - {\sin ^2}x)(4(1 - {\sin ^2}x) - 3)
We will multiply them and open the brackets
=4sinx(1sin2x)(14sin2x)= 4\sin x(1 - {\sin ^2}x)(1 - 4{\sin ^2}x)
=4sinx(15sin2x+4sin4x)= 4\sin x(1 - 5{\sin ^2}x + 4{\sin ^4}x)
Hence, the equation sin5xsinxsin5x - sinx is 4sinx(15sin2x+4sin4x)4\sin x(1 - 5{\sin ^2}x + 4{\sin ^4}x)

Note: An algebraic sum of two or more angles is known as a compound angle. Through trigonometric functions, we may denote compound angles using trigonometric identities. Similarly, using the formula, we may convert the form from product to sum 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)