Solveeit Logo

Question

Question: How do you solve the logarithmic equation: \(3{{\log }_{5}}x-{{\log }_{5}}\left( 5x \right)=3-{{\log...

How do you solve the logarithmic equation: 3log5xlog5(5x)=3log5253{{\log }_{5}}x-{{\log }_{5}}\left( 5x \right)=3-{{\log }_{5}}25?

Explanation

Solution

We solve the given equation using the different identity formulas of logarithm like loga+logb=log(ab)\log a+\log b=\log \left( ab \right), logma=ya=my{{\log }_{m}}a=y\Rightarrow a={{m}^{y}}. We first take all the logarithmic functions on one side. The main step would be to eliminate the logarithm function and keep only the quadratic equation of x. we solve the equation with the help of factorisation.

Complete step by step solution:
We first take all the logarithmic functions on one side for 3log5xlog5(5x)=3log5253{{\log }_{5}}x-{{\log }_{5}}\left( 5x \right)=3-{{\log }_{5}}25.
So, 3log5xlog5(5x)+log525=33{{\log }_{5}}x-{{\log }_{5}}\left( 5x \right)+{{\log }_{5}}25=3. Using the identity plogxa=logxapp{{\log }_{x}}a={{\log }_{x}}{{a}^{p}} for 3log5x3{{\log }_{5}}x, we get
3log5x=log5x33{{\log }_{5}}x={{\log }_{5}}{{x}^{3}}.
We use the identity functions of loga+logb=log(ab),logalogb=log(ab)\log a+\log b=\log \left( ab \right),\log a-\log b=\log \left( \dfrac{a}{b} \right).
We operate the addition and subtraction part in the left-hand side of log5x3log5(5x)+log525=3{{\log }_{5}}{{x}^{3}}-{{\log }_{5}}\left( 5x \right)+{{\log }_{5}}25=3. All of the logarithms have the same base.
log5x3log5(5x)+log525=log5(x3×255x)=log5(5x2){{\log }_{5}}{{x}^{3}}-{{\log }_{5}}\left( 5x \right)+{{\log }_{5}}25={{\log }_{5}}\left( \dfrac{{{x}^{3}}\times 25}{5x} \right)={{\log }_{5}}\left( 5{{x}^{2}} \right).
The equation becomes log5(5x2)=3{{\log }_{5}}\left( 5{{x}^{2}} \right)=3.
Now we have to eliminate the logarithm function to find the quadratic equation of x.
We know logma=ya=my{{\log }_{m}}a=y\Rightarrow a={{m}^{y}}.
Applying the rule in case of log5(5x2)=3{{\log }_{5}}\left( 5{{x}^{2}} \right)=3, we get
log5(5x2)=3 5x2=53 x2=52 x=±5 \begin{aligned} & {{\log }_{5}}\left( 5{{x}^{2}} \right)=3 \\\ & \Rightarrow 5{{x}^{2}}={{5}^{3}} \\\ & \Rightarrow {{x}^{2}}={{5}^{2}} \\\ & \Rightarrow x=\pm 5 \\\ \end{aligned}
Now if we put x=5x=-5, the logarithmic values become negative which is not possible.
Therefore, solution of 3log5xlog5(5x)=3log5253{{\log }_{5}}x-{{\log }_{5}}\left( 5x \right)=3-{{\log }_{5}}25 is x=5x=5.

Note: In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of ee is fixed for ln\ln .
We also need to remember that for logarithm function there has to be a domain constraint.
For any logba{{\log }_{b}}a, a>0a>0. This means for log5x,log5(5x){{\log }_{5}}x,{{\log }_{5}}\left( 5x \right), x>0x>0 and 5x>05x>0.
The simplified form is x>0x>0.