Solveeit Logo

Question

Question: How do you solve the inequality\[\dfrac{1}{{x + 1}} \succ \dfrac{3}{{x - 2}}?\]...

How do you solve the inequality1x+13x2?\dfrac{1}{{x + 1}} \succ \dfrac{3}{{x - 2}}?

Explanation

Solution

The given question describes the operation of addition/ subtraction/ multiplication/ division. In this question, we have to find the value ofxx. At first, we would arrange the fraction terms to one side. After that, we have to find the final condition to find the value xx. In this question, we have to use a number line to assume the value ofxx and compare it with the final condition.

Complete step by step solution:
In this question, we have to solve the following inequality terms,
1x+13x2\dfrac{1}{{x + 1}} \succ \dfrac{3}{{x - 2}}

First, we have to arrange the fraction terms into one side of the equation. So, the above
equation can also be written as,

3x21x+1 3x21x+10 \dfrac{3}{{x - 2}} \prec \dfrac{1}{{x + 1}} \\\ \dfrac{3}{{x - 2}} - \dfrac{1}{{x + 1}} \prec 0 \\\

Using cross-multiplication, we get

(3(x+1))(1(x2))(x2)(x+1)0 3x+3x+2(x2)(x+1)0 \dfrac{{\left( {3\left( {x + 1} \right)} \right) - \left( {1\left( {x - 2} \right)} \right)}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \prec 0 \\\ \dfrac{{3x + 3 - x + 2}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \prec 0 \\\

Let’s solve the numerator using arithmetic operations,

3x+3x+2(x2)(x+1)0 2x+5(x2)(x+1)0 \dfrac{{3x + 3 - x + 2}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \prec 0 \\\ \dfrac{{2x + 5}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \prec 0 \\\

So, the final condition is,
\dfrac{{2x + 5}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \prec 0$$$$ \to \left( 1 \right)

For finding the value ofxx we have to assume,
(Case: 1) 2x+5=02x + 5 = 0
(Case: 2) x2=0x - 2 = 0
(Case: 3) x+1=0x + 1 = 0

In case: 1 we get,

2x+5=0 2x=5 x=52 2x + 5 = 0 \\\ 2x = - 5 \\\ x = \dfrac{{ - 5}}{2} \\\

In case: 2 we get,

x2=0 x=2 x - 2 = 0 \\\ x = 2 \\\

In vase: 3 we get,

x+1=0 x=1 x + 1 = 0 \\\ x = - 1 \\\

So finally we have,
x=52,x=2x = \dfrac{{ - 5}}{2},x = 2andx=1x = - 1

Let’s mark the above-mentioned values in the number line,


We have three options forxxvalue. Now we need to find the correctxxvalue among the three answers. Here we have intervals (,52),(52,1),(1,2)and(2,)\left( { - \infty ,\dfrac{{ - 5}}{2}} \right),\left( {\dfrac{{ - 5}}{2}, - 1} \right),\left( { - 1,2} \right)and\left( {2,\infty } \right)

To find the correct interval we have to assume anyone value with each interval and substitute that value in the equation(1)\left( 1 \right)

In the interval (,52)\left( { - \infty ,\dfrac{{ - 5}}{2}} \right) we assume3 - 3. So, the final
condition(1)\left( 1 \right)becomes,

(1)2x+5(x2)(x+1)0\left( 1 \right) \to \dfrac{{2x + 5}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \prec 0

Where, x=3x = - 3

2(3)+5(32)(3+1)0\dfrac{{2\left( { - 3} \right) + 5}}{{\left( { - 3 - 2} \right)\left( { - 3 + 1} \right)}} \prec 0

6+5(5)(2)0\dfrac{{ - 6 + 5}}{{\left( { - 5} \right)\left( { - 2} \right)}} \prec 0

1100\dfrac{{ - 1}}{{10}} \prec 0

The above equation satisfies the condition.

In the interval(52,1)\left( {\dfrac{{ - 5}}{2}, - 1} \right), we assume x=2x = - 2

(1)2x+5(x2)(x+1)0\left( 1 \right) \to \dfrac{{2x + 5}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \prec 0

2(2)+5(22)(2+1)0\dfrac{{2\left( { - 2} \right) + 5}}{{\left( { - 2 - 2} \right)\left( { - 2 + 1} \right)}} \prec 0

4+51×40\dfrac{{ - 4 + 5}}{{ - 1 \times - 4}} \prec 0

140\dfrac{1}{4} \prec 0

The above equation doesn’t satisfy the condition.

In the interval(1,2)\left( { - 1,2} \right), we assumex=0x = 0

(1)2x+5(x2)(x+1)0\left( 1 \right) \to \dfrac{{2x + 5}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \prec 0

2(0)+5(02)(0+1)0\dfrac{{2\left( 0 \right) + 5}}{{\left( {0 - 2} \right)\left( {0 + 1} \right)}} \prec 0

520\dfrac{{ - 5}}{2} \prec 0

The above equation satisfies the condition.
In the interval(2,)\left( {2,\infty } \right), we assumex=3x = 3

(1)2x+5(x2)(x+1)0\left( 1 \right) \to \dfrac{{2x + 5}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} \prec 0

2(3)+5(32)(3+1)0\dfrac{{2\left( 3 \right) + 5}}{{\left( {3 - 2} \right)\left( {3 + 1} \right)}} \prec 0

6+54×10\dfrac{{6 + 5}}{{4 \times 1}} \prec 0

1140\dfrac{{11}}{4} \prec 0

The above equation doesn’t satisfy the condition.

So, the final answer isx(,(52))(1,2)x \in \left( { - \infty ,\left( {\dfrac{{ - 5}}{2}} \right)} \right) \cup \left( { - 1,2} \right)

Note: The total limit of the number line is(,+)\left( { - \infty , + \infty } \right). In this type of question we should use the arithmetic operation of addition/ subtraction/ multiplication/ division/ cross multiplication. Take care when assuming the value ofxxin the number line. If thexxvalue is a fraction number, convert it into a decimal number for easy calculation.