Solveeit Logo

Question

Question: How do you solve the identity \[\sin \left( x \right) + \sin \left( {2x} \right) = 0\]?...

How do you solve the identity sin(x)+sin(2x)=0\sin \left( x \right) + \sin \left( {2x} \right) = 0?

Explanation

Solution

Here the given question is based on trigonometric identities and equations. We have to solve the equation for the angle x by using the double angle formula of sine ratio i.e., sin(2x)=2sinxcosx\sin \left( {2x} \right) = 2\sin x\cos x and further simplify using the standard trigonometric values we get required solution.

Complete step-by-step solution:
Trigonometry the study of the relationships which involve angles, lengths, and heights of triangles. It has many useful identities for learning and deriving the many equations and formulas in science.
Formulas expressing trigonometric functions of an angle 2x2x in terms of functions of an angle xx,
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x

cos2x=cos2xsin2x cos2x=2cos2x1 cos2x=12sin2x  \cos 2x = {\cos ^2}x - {\sin ^2}x \\\ \cos 2x = 2{\cos ^2}x - 1 \\\ \cos 2x= 1 - 2{\sin ^2}x \\\

tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}
Consider the given trigonometric equation
sin(x)+sin(2x)=0\Rightarrow \,\,\,\,\sin \left( x \right) + \sin \left( {2x} \right) = 0
By sing double angle formula sin2x\sin 2x can be written as 2sinxcosx2\sin x\cos x
sin(x)+2sinxcosx=0\Rightarrow \,\,\,\,\sin \left( x \right) + 2\sin x\cos x = 0
Take sinx\sin x as common
sin(x)(1+2cosx)=0\Rightarrow \,\,\,\,\sin \left( x \right)\left( {1 + 2\cos x} \right) = 0
Equate each factor to the zero, then
sin(x)=0\Rightarrow \,\,\,\,\sin \left( x \right) = 0 and 1+2cosx=01 + 2\cos x = 0
Consider
sin(x)=0\Rightarrow \,\,\,\,\sin \left( x \right) = 0
Take inverse sine function on both side, then
sin1(sinx)=sin1(0)\Rightarrow \,\,\,\,{\sin ^{ - 1}}\left( {\sin x} \right) = {\sin ^{ - 1}}\left( 0 \right)
As we know xx1=1x{x^{ - 1}} = 1, then
x=2nπ,π+2nπ\Rightarrow \,\,\,\,x = 2n\pi ,\,\,\pi + 2n\pi, for any integer nn.
Next, consider
1+2cosx=0\Rightarrow \,\,\,1 + 2\cos x = 0
Take 1 to the RHS
2cosx=1\Rightarrow \,\,\,2\cos x = - 1
Divide both side by 2, then
cosx=12\Rightarrow \,\,\,\cos x = - \dfrac{1}{2}
Take inverse cosine function on both side, then
cos1(cosx)=cos1(12)\Rightarrow \,\,\,{\cos ^{ - 1}}\left( {\cos x} \right) = {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right)
x=2π3+2nπ,4π3+2nπ\Rightarrow \,\,\,x = \dfrac{{2\pi }}{3} + 2n\pi ,\,\dfrac{{4\pi }}{3} + 2n\pi, for any integer nn.
The final solution is all the values that make sin(x)(1+2cos(x))=0\sin \left( x \right)\left( {1 + 2\cos \left( x \right)} \right) = 0 true.
x=2nπ,π+2nπ,2π3+2nπ,4π3+2nπ\Rightarrow \,\,\,\,x = 2n\pi ,\pi + 2n\pi ,\dfrac{{2\pi }}{3} + 2n\pi ,\dfrac{{4\pi }}{3} + 2n\pi
Consolidate 2nπ2n\pi and π+2nπ\pi + 2n\pi to nπn\pi .
x=nπ,2π3+2nπ,4π3+2nπx = n\pi ,\dfrac{{2\pi }}{3} + 2n\pi ,\dfrac{{4\pi }}{3} + 2n\pi for any integer nn.

Hence the value of angle x in the trigonometric equation sin(x)+sin(2x)=0\sin \left( x \right) + \sin \left( {2x} \right) = 0 is x=nπ,2π3+2nπ,4π3+2nπx = n\pi ,\dfrac{{2\pi }}{3} + 2n\pi ,\dfrac{{4\pi }}{3} + 2n\pi for any integer nn.

Note: Since we can say at which value of x the addition of cosine and sine will be zero. The ASTC rule defined as all sine tan cosine this explains all trigonometry ratios are positive in the first quadrant. Sine trigonometry ratio is positive in the second quadrant. Tan trigonometry ratio is positive in the third quadrant. The cosine trigonometry ratio is positive in the fourth quadrant.