Solveeit Logo

Question

Question: How do you solve the following equation \( {\left[ {\sin \left( {2x} \right) + \cos \left( {2x} \rig...

How do you solve the following equation [sin(2x)+cos(2x)]2=1{\left[ {\sin \left( {2x} \right) + \cos \left( {2x} \right)} \right]^2} = 1 in the interval [0,2π][0,2\pi ] ?

Explanation

Solution

Hint : The given trigonometric equation can be simplified using the trigonometric identities to get the equation that has only one trigonometric function. After, simplification uses the general solution of a trigonometric equation of the function and get all the solutions.
Formula used:
We have the general solution of the equation as sinx=siny\sin x = \sin y is given by x=nπ+(1)nyx = n\pi + {( - 1)^n}y , where nZn \in \mathbb{Z} .

Complete step-by-step answer :
The given equation is [sin(2x)+cos(2x)]2=1{\left[ {\sin \left( {2x} \right) + \cos \left( {2x} \right)} \right]^2} = 1 - - - - - - - - - - - - - - - - - (1)
Now, we will use the algebraic identity (a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} to simplify the given equation as sin2(2x)+2sin(2x)cos(2x)+cos2(2x)=1{\sin ^2}\left( {2x} \right) + 2\sin \left( {2x} \right)\cos \left( {2x} \right) + {\cos ^2}\left( {2x} \right) = 1 .
Rearranging the terms, we get, (1) as sin2(2x)+cos2(2x)+2sin(2x)cos(2x)=1{\sin ^2}\left( {2x} \right) + {\cos ^2}\left( {2x} \right) + 2\sin \left( {2x} \right)\cos \left( {2x} \right) = 1 .
1+2sin(2x)cos(2x)=1\Rightarrow 1 + 2\sin \left( {2x} \right)\cos \left( {2x} \right) = 1
[Using the identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 ]
2sin(2x)cos(2x)=11=0\Rightarrow 2\sin \left( {2x} \right)\cos \left( {2x} \right) = 1 - 1 = 0
sin(4x)=0\Rightarrow \sin \left( {4x} \right) = 0
[Using the identity sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta ]
sin(4x)=sin(0)\Rightarrow \sin \left( {4x} \right) = \sin \left( 0 \right)
[Since, sin(0)=0\sin \left( 0 \right) = 0 ]
Now, we will use the general solution of the trigonometric equation sinx=siny\sin x = \sin y is given by x=nπ+(1)nyx = n\pi + {( - 1)^n}y , where nZn \in \mathbb{Z} .
4x=nπ+(1)n(0), nZ\Rightarrow 4x = n\pi + {( - 1)^n}\left( 0 \right),{\text{ }}n \in \mathbb{Z}
x=nπ4, nZ\Rightarrow x = \dfrac{{n\pi }}{4},{\text{ }}n \in \mathbb{Z} , is the general solution of (1).
x=0,π4,π2,3π4,π,5π4,3π2,7π4,2π,...\Rightarrow x = 0,\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\pi ,\dfrac{{5\pi }}{4},\dfrac{{3\pi }}{2},\dfrac{{7\pi }}{4},2\pi ,... for n=0,1,2,3,4,5,6,7,8,...n = 0,1,2,3,4,5,6,7,8,...
But to find the solutions in the given interval which is positive, we will look at the solutions generated by the non-negative integers.
So, the solutions for the given equation (1) in the interval [0,2π][0,2\pi ] are 0,π4,π2,3π4,π,5π4,3π2,7π4 and 2π0,\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\pi ,\dfrac{{5\pi }}{4},\dfrac{{3\pi }}{2},\dfrac{{7\pi }}{4}{\text{ and }}2\pi .
So, the correct answer is “ 0,π4,π2,3π4,π,5π4,3π2,7π4 and 2π0,\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\pi ,\dfrac{{5\pi }}{4},\dfrac{{3\pi }}{2},\dfrac{{7\pi }}{4}{\text{ and }}2\pi .”.

Note : Other important general solutions to solve the trigonometric equations are,
tanx=tanyx=nπ+y, where nZ\tan x = \tan y \Rightarrow x = n\pi + y,{\text{ where }}n \in \mathbb{Z}
cosx=cosyx=2nπ±y, where nZ\cos x = \cos y \Rightarrow x = 2n\pi \pm y,{\text{ where }}n \in \mathbb{Z}
It is important to know all the trigonometric formulas and identities beforehand to simplify the trigonometric equation. So, that we can use the three known general solutions. It is very important to keep the interval in mind while solving the equation. Because that itself would make the steps simpler and can help in choosing the required solution.