Solveeit Logo

Question

Question: How do you solve \(\tan x-2-3\cot x=0\) ?...

How do you solve tanx23cotx=0\tan x-2-3\cot x=0 ?

Explanation

Solution

To solve the given equation that is a trigonometric equation as tanx23cotx=0\tan x-2-3\cot x=0 , we will convert the whole equation in one trigonometric function. Here, we will convert the given equation in the form of tanx\tan x only. Then we do require process and calculation so that we can get the value of xx .

Complete step by step solution:
Since, we have the question that is a trigonometric equation as:
tanx23cotx=0\Rightarrow \tan x-2-3\cot x=0
In the above equation, we can see that there are two trigonometric functions that are tanx\tan x and cotx\cot x . So, in the next process we will convert this equation in the form of one trigonometric function.
As we know that cotx\cot x is an inverse trigonometric function of tanx\tan x that is cotx=1tanx\cot x=\dfrac{1}{\tan x} . So, we can use this rule in the above equation and can convert the above equation in the form of one trigonometric function that is tanx\tan x only here as:
tanx23×1tanx=0\Rightarrow \tan x-2-3\times \dfrac{1}{\tan x}=0
Now, we will multiply by tanx\tan x both sides in the above equation. Since, left side we have 00 . So, the result of multiplication with 00 always gives 00. Therefore, the above equation will be as:
tanx×tanx2×tanx3×tanx×1tanx=tanx×0\Rightarrow \tan x\times \tan x-2\times \tan x-3\times \tan x\times \dfrac{1}{\tan x}=\tan x\times 0
After doing the multiplication with each term in the above equation will be as:
tan2x2tanx3=0\Rightarrow {{\tan }^{2}}x-2\tan x-3=0
We can write the above equation as:
tan2x2tanx=3\Rightarrow {{\tan }^{2}}x-2\tan x=3
Now, we convert it in a square by adding 11 both sides as:
tan2x2tanx+1=3+1\Rightarrow {{\tan }^{2}}x-2\tan x+1=3+1
Since, we have the above equation in the form of a22ab+b2{{a}^{2}}-2ab+{{b}^{2}} . So we can write it as (ab)2{{\left( a-b \right)}^{2}} as:
(tanx1)2=4\Rightarrow {{\left( \tan x-1 \right)}^{2}}=4
Now, taking square root both sides of the above equation we will get as:
tanx1=±2\Rightarrow \tan x-1=\pm 2
Here, we will take +2+2 and 2-2 one by one as:

Case I:
tanx1=+2\Rightarrow \tan x-1=+2
Now, we will solve the equation as:
tanx=2+1\Rightarrow \tan x=2+1
tanx=3\Rightarrow \tan x=3
Here, we will take tan1{{\tan }^{-1}} both sides as:
tan1(tanx)=tan1(3)\Rightarrow {{\tan }^{-1}}\left( \tan x \right)={{\tan }^{-1}}\left( 3 \right)
tan1{{\tan }^{-1}} will eliminate tan\tan in the above equation as:
x=tan1(3)\Rightarrow x={{\tan }^{-1}}\left( 3 \right)

Case II:
tanx1=2\Rightarrow \tan x-1=-2
Now, we will solve the equation as:
tanx=2+1\Rightarrow \tan x=-2+1
tanx=1\Rightarrow \tan x=-1
Here, we will take tan1{{\tan }^{-1}} both sides as:
tan1(tanx)=tan1(1)\Rightarrow {{\tan }^{-1}}\left( \tan x \right)={{\tan }^{-1}}\left( -1 \right)
tan1{{\tan }^{-1}} will eliminate tan\tan in the above equation as:
x=tan1(1)\Rightarrow x={{\tan }^{-1}}\left( -1 \right)

Hence, the solution for the given equation tanx23cotx=0\tan x-2-3\cot x=0 is both x=tan1(3)x={{\tan }^{-1}}\left( 3 \right) and x=tan1(1)x={{\tan }^{-1}}\left( -1 \right)

Note: Here, we can check whether our solution is correct or not by putting any one obtained value in the following way as:
Obtain value (we will choose any one):
x=tan1(3)\Rightarrow x={{\tan }^{-1}}\left( 3 \right)
We will apply tan\tan both sides as:
tanx=tan(tan1(3))\Rightarrow \tan x=\tan \left( {{\tan }^{-1}}\left( 3 \right) \right)
Since, tan\tan will cancel out tan1{{\tan }^{-1}} . So the above equation will be as:
tanx=3\Rightarrow \tan x=3
As we know that cotx\cot x is equal to 1tanx\dfrac{1}{\tan x}. So we will calculate the value of cotx\cot x as:
cotx=1tanx\Rightarrow \cot x=\dfrac{1}{\tan x}
cotx=13\Rightarrow \cot x=\dfrac{1}{3}
Now, we will use the value of tanx\tan x and cotx\cot x in the given equation that is tanx23cotx=0\tan x-2-3\cot x=0 as:
tanx23cotx=0\Rightarrow \tan x-2-3\cot x=0
323×13=0\Rightarrow 3-2-3\times \dfrac{1}{3}=0
Here, we will do the necessary calculation as:
321=0\Rightarrow 3-2-1=0
33=0\Rightarrow 3-3=0
0=0\Rightarrow 0=0
Since, L.H.S. = R.H.S. Hence, the solution is correct.