Solveeit Logo

Question

Question: How do you solve \[\tan \left( x+y \right)=\dfrac{\left( \tan x+\tan y \right)}{1-\tan y\tan x}\]?...

How do you solve tan(x+y)=(tanx+tany)1tanytanx\tan \left( x+y \right)=\dfrac{\left( \tan x+\tan y \right)}{1-\tan y\tan x}?

Explanation

Solution

In this problem, we have to solve the given trigonometric identity. Here we can first take the left-hand side and solve for the right-hand side. We know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}, we can use this formula first and then we can use the formula sin(x+y)=sinxcosycosxsiny\sin \left( x+y \right)=\sin x\cos y\cos x\sin y and cos(x+y)=cosxcosysinxsiny\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y. We can divide the result with cosxcosy\cos x\cos y to get the right-hand side.

Complete step-by-step solution:
Here we have to solve the given trigonometric identity.
tan(x+y)=(tanx+tany)1tanytanx\tan \left( x+y \right)=\dfrac{\left( \tan x+\tan y \right)}{1-\tan y\tan x}
We can now take the left-hand side and solve it for the right-hand side.
We know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}.
We can now write the left-hand side of the given trigonometric identity and write it as,
tan(x+y)=sin(x+y)cos(x+y)\Rightarrow \tan \left( x+y \right)=\dfrac{\sin \left( x+y \right)}{\cos \left( x+y \right)} …….. (1)
We can now simplify the above step.
We know that cos(x+y)=cosxcosysinxsiny\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y and sin(x+y)=sinxcosy+cosxsiny\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y.
We can now substitute the above formula in (1), we get
tan(x+y)=sinxcosy+cosxsinycosxcosysinxsiny\Rightarrow \tan \left( x+y \right)=\dfrac{\sin x\cos y+\cos x\sin y}{\cos x\cos y-\sin x\sin y}
We can now divide cosxcosy\cos x\cos y on both the numerator and the denominator, we get
tan(x+y)=sinxcosy+cosxsinycosxcosycosxcosysinxsinycosxcosy\Rightarrow \tan \left( x+y \right)=\dfrac{\dfrac{\sin x\cos y+\cos x\sin y}{\cos x\cos y}}{\dfrac{\cos x\cos y-\sin x\sin y}{\cos x\cos y}}
We can now simplify the above step, we get
tan(x+y)=sinxcosycosxcosy+cosxsinycosxcosycosxcosycosxcosysinxsinycosxcosy\Rightarrow \tan \left( x+y \right)=\dfrac{\dfrac{\sin x\cos y}{\cos x\cos y}+\dfrac{\cos x\sin y}{\cos x\cos y}}{\dfrac{\cos x\cos y}{\cos x\cos y}-\dfrac{\sin x\sin y}{\cos x\cos y}}
We can now cancel similar terms in both the numerator and the denominator in the above step, we get
tan(x+y)=sinxcosx+sinycosy1sinxsinycosxcosy\Rightarrow \tan \left( x+y \right)=\dfrac{\dfrac{\sin x}{\cos x}+\dfrac{\sin y}{\cos y}}{1-\dfrac{\sin x\sin y}{\cos x\cos y}}
We can now simplify the above step using the formula tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}, we get
tan(x+y)=tanx+tany1tanxtany\Rightarrow \tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}
LHS = RHS.
Therefore, tan(x+y)=(tanx+tany)1tanytanx\tan \left( x+y \right)=\dfrac{\left( \tan x+\tan y \right)}{1-\tan y\tan x}.

Note: We should always remember the trigonometric formula such as tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. We should also remember the identities sin(x+y)=sinxcosy+cosxsiny\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y and cos(x+y)=cosxcosysinxsiny\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y. We should also know to substitute the formulas and simplify it to get the final answer or to solve for both sides.