Solveeit Logo

Question

Question: How do you solve \(\sin x - \tan x = 0\)?...

How do you solve sinxtanx=0\sin x - \tan x = 0?

Explanation

Solution

A general solution is one which gives all solutions of a given trigonometric equation where n is integer and nZn \in Z.
The above equation can be easily solved by putting the values of the given trigonometric function.
In this question, tanx\tan x can be written in the form of sinx\sin x and cosx\cos x.

Complete step by step answer:
We know, tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
Putting the value of tanx\tan xin sinxtanx=0\sin x - \tan x = 0
sinxsinxcosx=0\Rightarrow \sin x - \dfrac{{\sin x}}{{\cos x}} = 0
Taking LCM and solving the above equation,
sinxcosxsinxcosx=0\Rightarrow \dfrac{{\sin x\cos x - \sin x}}{{\cos x}} = 0
By cross multiplication,
sinxcosxsinx=0cosx\Rightarrow \sin x\cos x - \sin x = 0 \cdot \cos x
sinxcosxsinx=0\Rightarrow \sin x\cos x - \sin x = 0
Take sinx\sin x common,
sinx(cosx1)=0\Rightarrow \sin x(\cos x - 1) = 0
A factor should be zero.
sinx=0\Rightarrow \sin x = 0 or cosx1=0\cos x - 1 = 0
sinx=0\Rightarrow \sin x = 0 or cosx=1\cos x = 1
We know, the general solution of sinx=0\sin x = 0 is x=nπx = n\pi
and for cosx=1\cos x = 1
We know, cos0=1\cos {0^ \circ } = 1
So, cosx=cos0\cos x = \cos {0^ \circ }
cosx=cosα\Rightarrow \cos x = \cos \alpha
x=2nπ±α\Rightarrow x = 2n\pi \pm \alpha
Here, α=0\alpha = {0^ \circ }
So, x=2nπ±0x = 2n\pi \pm 0
x=2nπ\Rightarrow x = 2n\pi
Thus, x=nπx = n\pi or x=2nπx = 2n\pi , where nZn \in Z and n is integer.
Additional information:
You can also solve this by taking tanx\tan x to the right-hand side.
sinx=tanx\Rightarrow \sin x = \tan x
sinx=sinxcosx\Rightarrow \sin x = \dfrac{{\sin x}}{{\cos x}}
sinxcosx=sinx\Rightarrow \sin x\cos x = \sin x
Bring sinx\sin x to the left-hand side,
sinxcosxsinx=0\Rightarrow \sin x\cos x - \sin x = 0
Take sinx\sin x common
sinx(cosx1)=0\Rightarrow \sin x(\cos x - 1) = 0
Factors should be zero
sinx=0\Rightarrow \sin x = 0 or cosx1=0\cos x - 1 = 0
sinx=0\Rightarrow \sin x = 0 or cosx=1\cos x = 1
We know, cos0=1\cos {0^ \circ } = 1
So, cosx=cos0\cos x = \cos {0^ \circ }
cosx=cosα\Rightarrow \cos x = \cos \alpha
x=2nπ±α\Rightarrow x = 2n\pi \pm \alpha
Here, α=0\alpha = {0^ \circ }
So, x=2nπ±0x = 2n\pi \pm 0
x=2nπ\Rightarrow x = 2n\pi

Thus, x=nπx = n\pi or x=2nπx = 2n\pi nZn \in Z and n is integer.

Note: The general solution of sinx=0\sin x = 0 is x=nπx = n\pi , general solution of cosx=1\cos x = 1 is x=2nπx = 2n\pi , general solution of cosx=0\cos x = 0 is x=(2n+1)π2x = (2n + 1)\dfrac{\pi }{2} and general solution of tanx=0\tan x = 0 is x=nπx = n\pi where nZn \in Z and n is integer.
Range of sinx=[1,1]\sin x = [ - 1,1] ,domain is all real numbers and period =2π= 2\pi
Range of cosx=[1,1]\cos x = [ - 1,1] ,domain is all real numbers and period =2π= 2\pi
Range of tanx=\tan x = all real numbers, domain is R(2k+1)π2R - (2k + 1)\dfrac{\pi }{2} , kZk \in Z, k is integer and R is real number , period =π= \pi
Always try to reduce the trigonometric equations in simpler functions like sinθ\sin \theta , cosθ\cos \theta to make it easier to solve.
Always bring the right-hand side values to the left-hand side so as to factorize and make the factor zero for each.
Signs of all trigonometric functions should be taken care of for every interval or quadrant.