Solveeit Logo

Question

Question: How do you solve \(\sin \left( \dfrac{x}{2} \right)+\cos x=1\)?...

How do you solve sin(x2)+cosx=1\sin \left( \dfrac{x}{2} \right)+\cos x=1?

Explanation

Solution

Hint : In the question we have two trigonometric ratios first one is sin\sin and the second one is cos\cos . To solve the given equation, we need to convert the whole equation in terms of a single trigonometric ratio i.e., we need to convert the terms in the equations into either sin\sin or cos\cos . For this we will subtract the term cosx\cos x on both sides of the equation, then we will get 1cosx1-\cos x in LHS. We have the formula 1cosx=2sin2(x2)1-\cos x=2{{\sin }^{2}}\left( \dfrac{x}{2} \right). So, we will substitute this value in the given equation and solve the obtained equation to get the required result.

Complete step by step answer:
Given that, sin(x2)+cosx=1\sin \left( \dfrac{x}{2} \right)+\cos x=1.
Subtracting cosx\cos x from both sides of the above equation, then we will get
sin(x2)+cosxcosx=1cosx\sin \left( \dfrac{x}{2} \right)+\cos x-\cos x=1-\cos x
We know that +xx=0+x-x=0, then we will have
sin(x2)=1cosx\Rightarrow \sin \left( \dfrac{x}{2} \right)=1-\cos x
We have a trigonometric formula 1cosx=2sin2(x2)1-\cos x=2{{\sin }^{2}}\left( \dfrac{x}{2} \right). Substituting this value in the above equation, then we will get
sin(x2)=2sin2(x2)\Rightarrow \sin \left( \dfrac{x}{2} \right)=2{{\sin }^{2}}\left( \dfrac{x}{2} \right)
Simplifying the above equation, then we will get
sin(x2)2sin2(x2)=0\Rightarrow \sin \left( \dfrac{x}{2} \right)-2{{\sin }^{2}}\left( \dfrac{x}{2} \right)=0
Taking sin(x2)\sin \left( \dfrac{x}{2} \right) as common in LHS of the above equation, then we will get
sin(x2)[12sin(x2)]=0\Rightarrow \sin \left( \dfrac{x}{2} \right)\left[ 1-2\sin \left( \dfrac{x}{2} \right) \right]=0
Equating each term to zero individually, then we will have
sin(x2)=0\sin \left( \dfrac{x}{2} \right)=0 or 12sin(x2)=0 2sin(x2)=1 sin(x2)=12 \begin{aligned} & 1-2\sin \left( \dfrac{x}{2} \right)=0 \\\ & \Rightarrow 2\sin \left( \dfrac{x}{2} \right)=1 \\\ & \Rightarrow \sin \left( \dfrac{x}{2} \right)=\dfrac{1}{2} \\\ \end{aligned}
We have the values sin0=sinπ=sin2π=0\sin 0=\sin \pi =\sin 2\pi =0, sinπ6=sin5π6=12\sin \dfrac{\pi }{6}=\sin \dfrac{5\pi }{6}=\dfrac{1}{2}. So the equation sin(x2)=0\sin \left( \dfrac{x}{2} \right)=0 has three solution which are
x2=0x=0\dfrac{x}{2}=0\Rightarrow x=0
x2=πx=2π\dfrac{x}{2}=\pi \Rightarrow x=2\pi
x2=2πx=4π\dfrac{x}{2}=2\pi \Rightarrow x=4\pi .
Now the equation sin(x2)\sin \left( \dfrac{x}{2} \right) has two solutions which are
x2=π6x=π3\dfrac{x}{2}=\dfrac{\pi }{6}\Rightarrow x=\dfrac{\pi }{3}
x2=5π6x=5π3\dfrac{x}{2}=\dfrac{5\pi }{6}\Rightarrow x=\dfrac{5\pi }{3}
Hence the solution set for the given equation sin(x2)+cosx=1\sin \left( \dfrac{x}{2} \right)+\cos x=1 is x=0,π3,5π3,2π,4πx=0,\dfrac{\pi }{3},\dfrac{5\pi }{3},2\pi ,4\pi .

Note:
We can also solve the trigonometric equations by plotting a graph on the coordinate system. We can observe that the graph is looks like below

The solutions for the given equation are the points where the plot meets the xaxisx-axis.