Solveeit Logo

Question

Question: How do you solve \(\sin 4x - 2\sin 2x = 0\) in the interval \(\left[ {0,360} \right]\)?...

How do you solve sin4x2sin2x=0\sin 4x - 2\sin 2x = 0 in the interval [0,360]\left[ {0,360} \right]?

Explanation

Solution

Given the trigonometric expression. We have to find the value of x that must lie between zero and 360360. First, we will apply the trigonometric identities to the expression. Then, simplify the expression by taking out the common terms from the bracket. Then, find the value of x by setting each expression equal to zero. Then, we will apply the general solution of the equation.

Formula used:
The formula for sin(A+B)\sin \left( {A + B} \right) is given as:
sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
The general solution of the equation, sinx=0\sin x = 0 is given as:
x=nπx = n\pi
The general solution of the equation, cosθ=cosα\cos \theta = \cos \alpha is given as:
θ=2nπ±α\theta = 2n\pi \pm \alpha

Complete step-by-step answer:
Given expression is sin4x2sin2x=0\sin 4x - 2\sin 2x = 0
First, we will rewrite the expression sin4x\sin 4xas a sum of 2x2x and 2x2x.
sin(2x+2x)2sin2x=0\Rightarrow \sin \left( {2x + 2x} \right) - 2\sin 2x = 0
Now, we will apply the sum formula to the expression.
sin2xcos2x+cos2xsin2x2sin2x=0\Rightarrow \sin 2x\cos 2x + \cos 2x\sin 2x - 2\sin 2x = 0
On combining like terms, we get:
2sin2xcos2x2sin2x=0\Rightarrow 2\sin 2x\cos 2x - 2\sin 2x = 0
Now, take out the common terms.
2sin2x(cos2x1)=0\Rightarrow 2\sin 2x\left( {\cos 2x - 1} \right) = 0
Now, set each factor equal to zero.
2sin2x=0 or cos2x1=0\Rightarrow 2\sin 2x = 0{\text{ or }}\cos 2x - 1 = 0
sin2x=0 or cos2x=1\Rightarrow \sin 2x = 0{\text{ or }}\cos 2x = 1
Now, apply the general solution to the expression sin2x=0\sin 2x = 0, we get:
2x=0,π,2π,3π,4π\Rightarrow 2x = 0,\pi ,2\pi ,3\pi ,4\pi
Now, divide both sides by 22.
x=0,π2,2π2,3π2,4π2,\Rightarrow x = 0,\dfrac{\pi }{2},\dfrac{{2\pi }}{2},\dfrac{{3\pi }}{2},\dfrac{{4\pi }}{2}, \ldots
x=0,π2,π,3π2,2π\Rightarrow x = 0,\dfrac{\pi }{2},\pi ,\dfrac{{3\pi }}{2},2\pi \ldots
Now, substitute 180180^\circ for π\pi into the expression.
x=0,90,180,270,360,\Rightarrow x = 0,90^\circ ,180^\circ ,270^\circ ,360^\circ , \ldots …… (1)
First, rewrite the expression cos2x=1\cos 2x = 1, by writing 11 in terms of cosθ\cos \theta .
cos2x=cos0\cos 2x = \cos 0^\circ
Now we will apply the general solution to the expression cos2x=cos0\cos 2x = \cos 0^\circ .
2x=0,2π,4π,8π,\Rightarrow 2x = 0,2\pi ,4\pi ,8\pi , \ldots
Now, divide both sides by 22.
x=0,2π2,4π2,8π2,\Rightarrow x = 0,\dfrac{{2\pi }}{2},\dfrac{{4\pi }}{2},\dfrac{{8\pi }}{2}, \ldots
x=0,π,2π,\Rightarrow x = 0,\pi ,2\pi , \ldots
Now, substitute 180180^\circ for π\pi into the expression.
x=0,180,360\Rightarrow x = 0,180^\circ ,360^\circ …... (2)
Now, combine the solutions from equation (1) and (2) in the interval [0,360]\left[ {0,360} \right].
x=0,90,180,270,360\Rightarrow x = 0,90^\circ ,180^\circ ,270^\circ ,360^\circ

Final answer: Hence the solution of the expression is 0,90,180,270,3600,90^\circ ,180^\circ ,270^\circ ,360^\circ

Note:
In such types of questions students mainly get confused in applying the formula. As they don't know which formula they have to apply. So, when the trigonometric function is given, then the student must apply the appropriate trigonometric formula and substitute the values into the formula.