Solveeit Logo

Question

Question: How do you solve \[{{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \righ...

How do you solve sin2A+sin2(AB)+2sinAcosBsin(BA){{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right) ?
A. sin2A{{\sin }^{2}}A
B. sin2B{{\sin }^{2}}B
C. cos2A{{\cos }^{2}}A
D. cos2B{{\cos }^{2}}B

Explanation

Solution

Hint : In the given question, we have been asked to solve the trigonometric expression i.e. sin2A+sin2(AB)+2sinAcosBsin(BA){{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right) . In order to solve this, we will expand or simplify the given trigonometric expression by using the trigonometric identity that i.e. sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B . Later by using the distributive property of multiplication we will simplify the given expression and solve the terms. In this way we will get the required answer.
We can use the trigonometric relations to write the given expressions in different trigonometric functions;
I. cotx=1tanx\cot x=\dfrac{1}{\tan x}
II. tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}
III. cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}
IV. secx=1cosx\sec x=\dfrac{1}{\cos x}
V. cosecx=1sinxco\sec x=\dfrac{1}{\sin x}

Complete step by step solution:
We have given that,
sin2A+sin2(AB)+2sinAcosBsin(BA)\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right)
Now,
Using the trigonometric identity i.e. sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B
Thus,
Substitute the value of sin2(AB)=(sinAcosBcosAsinB)(sinAcosBcosAsinB){{\sin }^{2}}\left( A-B \right)=\left( \sin A\cos B-\cos A\sin B \right)\left( \sin A\cos B-\cos A\sin B \right) in the above expression, we will obtain
sin2A+(sinAcosBcosAsinB)(sinAcosBcosAsinB)+2sinAcosB(sinBcosAcosBsinA)\Rightarrow {{\sin }^{2}}A+\left( \sin A\cos B-\cos A\sin B \right)\left( \sin A\cos B-\cos A\sin B \right)+2\sin A\cos B\left( \sin B\cos A-\cos B\sin A \right)
Using the distributive property of multiplication i.e. (a+b)×(c+d)=ac+ad+bc+bd\left( a+b \right)\times \left( c+d \right)=ac+ad+bc+bd
Simplifying the above equation,
sin2A+(sin2Acos2BsinAsinBcosAcosBsinAsinBcosAcosB+cos2Asin2B)+2sinAsinBcosAcosB2cos2Bsin2A\Rightarrow {{\sin }^{2}}A+\left( {{\sin }^{2}}A{{\cos }^{2}}B-\sin A\sin B\cos A\cos B-\sin A\sin B\cos A\cos B+{{\cos }^{2}}A{{\sin }^{2}}B \right)+2\sin A\sin B\cos A\cos B-2{{\cos }^{2}}B{{\sin }^{2}}A
Combining the like terms, we will get
sin2A+sin2Acos2B2sinAsinBcosAcosB+cos2Asin2B+2sinAsinBcosAcosB2sin2Acos2B\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B-2\sin A\sin B\cos A\cos B+{{\cos }^{2}}A{{\sin }^{2}}B+2\sin A\sin B\cos A\cos B-2{{\sin }^{2}}A{{\cos }^{2}}B
Again
Combining the like terms, we will get
sin2A+sin2Acos2B+cos2Asin2B2sin2Acos2B\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}A{{\cos }^{2}}B+{{\cos }^{2}}A{{\sin }^{2}}B-2{{\sin }^{2}}A{{\cos }^{2}}B
We will obtain,
sin2A+cos2Asin2Bsin2Acos2B\Rightarrow {{\sin }^{2}}A+{{\cos }^{2}}A{{\sin }^{2}}B-{{\sin }^{2}}A{{\cos }^{2}}B
Taking sin2A{{\sin }^{2}}A common term,
sin2A(1cos2B+cot2Asin2B)\Rightarrow {{\sin }^{2}}A\left( 1-{{\cos }^{2}}B+{{\cot }^{2}}A{{\sin }^{2}}B \right)
sin2Asin2B(1+cot2A)\Rightarrow {{\sin }^{2}}A{{\sin }^{2}}B\left( 1+{{\cot }^{2}}A \right)
As we know that, (1+cot2A)=cosec2A\left( 1+{{\cot }^{2}}A \right)=\cos e{{c}^{2}}A
Substituting the value, we will get
sin2Asin2B(cosec2A)\Rightarrow {{\sin }^{2}}A{{\sin }^{2}}B\left( \cos e{{c}^{2}}A \right)
As we know that the relation between the sin and cosec trigonometric function is cosecθ=1sinθ\cos ec\theta =\dfrac{1}{\sin \theta } ,
Therefore,
sin2Asin2B(1sin2A)\Rightarrow {{\sin }^{2}}A{{\sin }^{2}}B\left( \dfrac{1}{si{{n}^{2}}A} \right)
Cancelling out the common terms, we get
sin2B\Rightarrow {{\sin }^{2}}B
Therefore,
sin2A+sin2(AB)+2sinAcosBsin(BA)=sin2B\Rightarrow {{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \right)={{\sin }^{2}}B
Hence, the option (b) is the correct answer.
So, the correct answer is “Option b”.

Note : To solve any given trigonometric expression, you just need to remember all the basic identities of trigonometric functions and simplify the equation or the expression by using them. Since all trigonometric functions are inter-relatable thus it may be generally possible to solve the given trigonometric expression in multiple ways to arrive at the solution.