Question
Question: How do you solve \[{{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)+2\sin A\cos B\sin \left( B-A \righ...
How do you solve sin2A+sin2(A−B)+2sinAcosBsin(B−A) ?
A. sin2A
B. sin2B
C. cos2A
D. cos2B
Solution
Hint : In the given question, we have been asked to solve the trigonometric expression i.e. sin2A+sin2(A−B)+2sinAcosBsin(B−A) . In order to solve this, we will expand or simplify the given trigonometric expression by using the trigonometric identity that i.e. sin(A−B)=sinAcosB−cosAsinB . Later by using the distributive property of multiplication we will simplify the given expression and solve the terms. In this way we will get the required answer.
We can use the trigonometric relations to write the given expressions in different trigonometric functions;
I. cotx=tanx1
II. tanx=cosxsinx
III. cotx=sinxcosx
IV. secx=cosx1
V. cosecx=sinx1
Complete step by step solution:
We have given that,
⇒sin2A+sin2(A−B)+2sinAcosBsin(B−A)
Now,
Using the trigonometric identity i.e. sin(A−B)=sinAcosB−cosAsinB
Thus,
Substitute the value of sin2(A−B)=(sinAcosB−cosAsinB)(sinAcosB−cosAsinB) in the above expression, we will obtain
⇒sin2A+(sinAcosB−cosAsinB)(sinAcosB−cosAsinB)+2sinAcosB(sinBcosA−cosBsinA)
Using the distributive property of multiplication i.e. (a+b)×(c+d)=ac+ad+bc+bd
Simplifying the above equation,
⇒sin2A+(sin2Acos2B−sinAsinBcosAcosB−sinAsinBcosAcosB+cos2Asin2B)+2sinAsinBcosAcosB−2cos2Bsin2A
Combining the like terms, we will get
⇒sin2A+sin2Acos2B−2sinAsinBcosAcosB+cos2Asin2B+2sinAsinBcosAcosB−2sin2Acos2B
Again
Combining the like terms, we will get
⇒sin2A+sin2Acos2B+cos2Asin2B−2sin2Acos2B
We will obtain,
⇒sin2A+cos2Asin2B−sin2Acos2B
Taking sin2A common term,
⇒sin2A(1−cos2B+cot2Asin2B)
⇒sin2Asin2B(1+cot2A)
As we know that, (1+cot2A)=cosec2A
Substituting the value, we will get
⇒sin2Asin2B(cosec2A)
As we know that the relation between the sin and cosec trigonometric function is cosecθ=sinθ1 ,
Therefore,
⇒sin2Asin2B(sin2A1)
Cancelling out the common terms, we get
⇒sin2B
Therefore,
⇒sin2A+sin2(A−B)+2sinAcosBsin(B−A)=sin2B
Hence, the option (b) is the correct answer.
So, the correct answer is “Option b”.
Note : To solve any given trigonometric expression, you just need to remember all the basic identities of trigonometric functions and simplify the equation or the expression by using them. Since all trigonometric functions are inter-relatable thus it may be generally possible to solve the given trigonometric expression in multiple ways to arrive at the solution.