Solveeit Logo

Question

Question: How do you solve \[\sec x=\tan x+1\] for \[0\le x\le 2\pi \] ?...

How do you solve secx=tanx+1\sec x=\tan x+1 for 0x2π0\le x\le 2\pi ?

Explanation

Solution

In the given solution, you first need to change the equation in sine and cosine form and after solving the equation further try to make the equation that is comparable to the compound trigonometric identities and you need to divide the converted equation and then you need to apply compound trigonometric identity to get the solution by considering the range of the trigonometric function.

Formula used:
secx=1cosx\sec x=\dfrac{1}{\cos x}
tanx=sinxcosx\Rightarrow\tan x=\dfrac{\sin x}{\cos x}
To make the equation comparable to compound trigonometric formula, we will divide the resultant equation by
(coefficient of sinx)2+(coefficient of cosx)2\sqrt{{{\left( coefficient\ of\ \sin x \right)}^{2}}+{{\left( coefficient\ of\ \cos x \right)}^{2}}}
To find the value of xx:
x=2nπ±π4+π4,wherenIx=2n\pi \pm \dfrac{\pi }{4}+\dfrac{\pi }{4},where\,n\in I
cosxcosy+sinxsiny=cos(x+y)\Rightarrow\cos x\cos y+\sin x\sin y=\cos \left( x+y \right)

Complete step by step solution:
We have the given equation:
secx=tanx+1\sec x=\tan x+1
With the help of trigonometric formulas, we know the value of,
secx=1cosx\sec x=\dfrac{1}{\cos x}
tanx=sinxcosx\Rightarrow\tan x=\dfrac{\sin x}{\cos x}
Therefore, by substituting the value of secx\sec x and tanx\tan x in the given equation,
1cosx=sinxcosx+1\dfrac{1}{\cos x}=\dfrac{\sin x}{\cos x}+1
Simplifying the resultant equation, we obtain
1cosx=sinxcosx+cosxcosx\dfrac{1}{\cos x}=\dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\cos x}
1cosx=sinx+cosxcosx\Rightarrow\dfrac{1}{\cos x}=\dfrac{\sin x+\cos x}{\cos x}

By transposing cosx\cos x from the denomination of the RHS to the LHS of equals to sign,
There will be the inverse of mathematical operation, on transposing to other side division will change to multiplication,
Simplifying further, we get
1=sinx+cosx1=\sin x+\cos x
cosx+sinx=1\Rightarrow\cos x+\sin x=1
Now, to make the equation comparable to compound trigonometric formula, we will divide the resultant equation by
(coefficient of sinx)2+(coefficient of cosx)2\sqrt{{{\left( coefficient\ of\ \sin x \right)}^{2}}+{{\left( coefficient\ of\ \cos x \right)}^{2}}}
cosx+sinx=1\Rightarrow\cos x+\sin x=1
cosx+sinx12+12=112+12\Rightarrow\dfrac{\cos x+\sin x}{\sqrt{{{1}^{2}}+{{1}^{2}}}}=\dfrac{1}{\sqrt{{{1}^{2}}+{{1}^{2}}}}
cosx+sinx2=12\Rightarrow\dfrac{\cos x+\sin x}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}
cosx2+sinx2=12\Rightarrow\dfrac{\cos x}{\sqrt{2}}+\dfrac{\sin x}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}

As we all know that,
cosπ4=sinπ4=12\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}
Replace 12\dfrac{1}{\sqrt{2}} with cosπ4 and sinπ4\cos \dfrac{\pi }{4}\ and\ \sin \dfrac{\pi }{4}, we get
cosxcosπ4+sinxsinπ4=12\cos x\cos \dfrac{\pi }{4}+\sin x\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}
By remembering the compound angle formula of trigonometric identities, i.e.
cosxcosy+sinxsiny=cos(x+y)\cos x\cos y+\sin x\sin y=\cos \left( x+y \right)
By using this formula, we get
cosxcosπ4+sinxsinπ4=12\cos x\cos \dfrac{\pi }{4}+\sin x\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}
cos(xπ4)=12\Rightarrow\cos \left( x-\dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}

By doing general solution,
cosθ=12\cos \theta =\dfrac{1}{\sqrt{2}},
Which is,
xπ4=2nπ±π4,wherenIx-\dfrac{\pi }{4}=2n\pi \pm \dfrac{\pi }{4},where\,n\in I
Transposing π4\dfrac{\pi }{4}to the other side, we get
x=2nπ±π4+π4,wherenIx=2n\pi \pm \dfrac{\pi }{4}+\dfrac{\pi }{4},where\,n\in I
Checking for the value of x=2nπ+π4+π4=2nπ+π2x=2n\pi +\dfrac{\pi }{4}+\dfrac{\pi }{4}=2n\pi +\dfrac{\pi }{2}, here secx\sec x and tanx\tan x are undefined.
Checking for the value of x=2nππ4+π4=2nπx=2n\pi -\dfrac{\pi }{4}+\dfrac{\pi }{4}=2n\pi , here secx=1\sec x=1 and tanx=0\tan x=0, which is satisfying the given range of the equation i.e. secx=tanx+1\sec x=\tan x+1 for 0x2π0\le x\le 2\pi .

Therefore, the required solution is x=2nπx=2n\pi .

Note: While evaluating the trigonometric angles, it is always useful to bring the terms in the form of known quantities. Thus, it is always better to convert secx,cosecx and cotx\sec x,\cos ecx\ and\ \cot x in the terms of cosx,sinx and tanx\cos x,\sin x\ and\ \tan x. It is always better to remember some basic trigonometric identities, which makes the question to solve easier.