Solveeit Logo

Question

Question: How do you solve \( \sec x - 1 = \tan x? \)...

How do you solve secx1=tanx?\sec x - 1 = \tan x?

Explanation

Solution

Try to convert the equation in form of sin  &  cos\sin \;\& \;\cos and then solve further in order to make the equation parallel to the compound angle formula of trigonometric identities you should divide the converted equation of sin  and  cos\sin \;{\text{and}}\;\cos with (coefficient  of  sinx)2+(coefficient  of  cosx)2\sqrt {{{(coefficient\;of\;\sin x)}^2} + {{(coefficient\;of\;\cos x)}^2}} in order to get the required equation in which you can easily apply compound angle formulas of trigonometric identities.

Complete step by step solution:
Given secx1=tanx\sec x - 1 = \tan x , we have to convert it into sin  and  cos\sin \;{\text{and}}\;\cos form, to do this we will divide both sides with secx\sec x

secx1=tanx secx1secx=tanxsecx secxsecx1secx=tanxsecx 11secx=tanxsecx \Rightarrow \sec x - 1 = \tan x \\\ \Rightarrow \dfrac{{\sec x - 1}}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\\ \Rightarrow \dfrac{{\sec x}}{{\sec x}} - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\\ \Rightarrow 1 - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\\

Now we know that secx=1cosx  &  tanx=sinxcosx\sec x = \dfrac{1}{{\cos x}}\;\& \;\tan x = \dfrac{{\sin x}}{{\cos x}} , so replacing
them with sin  and  cos\sin \;{\text{and}}\;\cos as

111cosx=sinxcosx1cosx 1cosx=sinx cosx+sinx=1 \Rightarrow 1 - \dfrac{1}{{\dfrac{1}{{\cos x}}}} = \dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}}}} \\\ \Rightarrow 1 - \cos x = \sin x \\\ \Rightarrow \cos x + \sin x = 1 \\\

Now, in order to make this equation comparable to compound trigonometric formula, we will divide it
by (coefficient  of  sinx)2+(coefficient  of  cosx)2\sqrt {{{(coefficient\;of\;\sin x)}^2} + {{(coefficient\;of\;\cos x)}^2}}

cosx+sinx=1 cosx+sinx12+12=112+12 cosx+sinx1+1=11+1 cosx+sinx2=12 cosx2+sinx2=12 \Rightarrow \cos x + \sin x = 1 \\\ \Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {{1^2} + {1^2}} }} = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }} \\\ \Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {1 + 1} }} = \dfrac{1}{{\sqrt {1 + 1} }} \\\ \Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\\ \Rightarrow \dfrac{{\cos x}}{{\sqrt 2 }} + \dfrac{{\sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\\

Now we all know that cosπ4=sinπ4=12\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} , so replacing
12\dfrac{1}{{\sqrt 2 }} with cosπ4  and  sinπ4\cos \dfrac{\pi }{4}\;{\text{and}}\;\sin \dfrac{\pi }{4} , we will get
cosxcosπ4+sinxsinπ4=12\Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}

We have seen this type of equation before, do you remember where?
We have seen this type of trigonometric equation before in the compound angle formula of
trigonometric identities. Now, this becomes a trigonometric identity which is similar to this
cosxcosy+sinxsiny=cos(xy)\cos x\cos y + \sin x\sin y = \cos (x - y)

Now using the cosine formula of compound angle to solve further, we can write it as
cosxcosπ4+sinxsinπ4=12 cos(xπ4)=12  \Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} \\\ \Rightarrow \cos (x - \dfrac{\pi }{4}) = \dfrac{1}{{\sqrt 2 }} \\\

Now we know the general solution of cosθ=12\cos \theta = \dfrac{1}{{\sqrt 2 }} , which is x=2nπ±π4,  where  nIx = 2n\pi \pm \dfrac{\pi }{4},\;{\text{where}}\;n \in I

cos(xπ4)=12 xπ4=2nπ±π4,  where  nI x=2nπ±π4+π4,  where  nI \Rightarrow \cos \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} \\\ \Rightarrow x - \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\\ \Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} + \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\\

Checking for x=2nπ+π4+π4=2nπ+π2x = 2n\pi + \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi + \dfrac{\pi }{2} here secx\sec x and
tanx\tan x are undefined.

Checking for x=2nππ4+π4=2nπx = 2n\pi - \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi , secx=1\sec x = 1 and tanx=0\tan x = 0 which
is satisfying secx1=tanx\sec x - 1 = \tan x

\therefore required solution is x=2nπx = 2n\pi

Note: We can solve it by one more method,
Given secx1=tanx\sec x - 1 = \tan x
secxtanx=1\Rightarrow \sec x - \tan x = 1 _____(I)
We know that sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
sec2xtan2x=1 (secx+tanx)(secxtanx)=1  \Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\\ \Rightarrow (\sec x + \tan x)(\sec x - \tan x) = 1 \\\
Now using equation (I) and substituting the value of secxtanx=1\sec x - \tan x = 1 in above equation in order to solve further
(secx+tanx)×1=1\Rightarrow (\sec x + \tan x) \times 1 = 1
secx+tanx=1\Rightarrow \sec x + \tan x = 1 ______(II)

Now adding equation (I) and (II) we will get,
secxtanx+secx+tanx=1+1 2secx=2 secx=22 secx=1  \Rightarrow \sec x - \tan x + \sec x + \tan x = 1 + 1 \\\ \Rightarrow 2\sec x = 2 \\\ \Rightarrow \sec x = \dfrac{2}{2} \\\ \Rightarrow \sec x = 1 \\\

Now we know that secx=1cosx  \sec x = \dfrac{1}{{\cos x}}\;
secx=1 1cosx=1 1=cosx  \Rightarrow \sec x = 1 \\\ \Rightarrow \dfrac{1}{{\cos x}} = 1 \\\ \Rightarrow 1 = \cos x \\\

Now we know the general solution for cosx=1\cos x = 1 is 2nπ2n\pi , where nIn \in I
\therefore required solution is x=2nπx = 2n\pi