Solveeit Logo

Question

Question: How do you solve \( \log \left( x-3 \right)+\log \left( x-2 \right)=\log \left( 2x+24 \right) \) ?...

How do you solve log(x3)+log(x2)=log(2x+24)\log \left( x-3 \right)+\log \left( x-2 \right)=\log \left( 2x+24 \right) ?

Explanation

Solution

Hint : We solve the given equation using the different identity formulas of logarithm like loga+logb=log(ab)\log a+\log b=\log \left( ab \right) , loga=logba=b\log a=\log b\Rightarrow a=b . The main step would be to eliminate the logarithm function and keep only the quadratic equation of x. we solve the equation with the help of factorisation.

Complete step-by-step answer :
We take the logarithmic identity for the given equation log(x3)+log(x2)=log(2x+24)\log \left( x-3 \right)+\log \left( x-2 \right)=\log \left( 2x+24 \right) to find the solution for x. We have loga+logb=log(ab)\log a+\log b=\log \left( ab \right) .
We operate the addition part on the left-hand side of log(x3)+log(x2)=log(2x+24)\log \left( x-3 \right)+\log \left( x-2 \right)=\log \left( 2x+24 \right) .
\log \left( x-3 \right)+\log \left( x-2 \right)=\log \left\\{ \left( x-3 \right)\left( x-2 \right) \right\\} .
The equation becomes \log \left\\{ \left( x-3 \right)\left( x-2 \right) \right\\}=\log \left( 2x+24 \right) .
Now we have to eliminate the logarithm function to find the quadratic equation of x.
We know loga=logba=b\log a=\log b\Rightarrow a=b .
Applying the rule in case of \log \left\\{ \left( x-3 \right)\left( x-2 \right) \right\\}=\log \left( 2x+24 \right) , we get
\begin{aligned} & \log \left\\{ \left( x-3 \right)\left( x-2 \right) \right\\}=\log \left( 2x+24 \right) \\\ & \Rightarrow \left( x-3 \right)\left( x-2 \right)=2x+24 \\\ \end{aligned}
Now we have a quadratic equation of x. We need to solve it.
We simplify the equation to get
(x3)(x2)=2x+24 x27x18=0 \begin{aligned} & \left( x-3 \right)\left( x-2 \right)=2x+24 \\\ & \Rightarrow {{x}^{2}}-7x-18=0 \\\ \end{aligned} .
We factorise the polynomial to get x29x+2x18=0{{x}^{2}}-9x+2x-18=0 .
We take a grouping method to take commons out.
x29x+2x18=0 x(x9)+2(x9)=0 (x9)(x+2)=0 \begin{aligned} & {{x}^{2}}-9x+2x-18=0 \\\ & \Rightarrow x\left( x-9 \right)+2\left( x-9 \right)=0 \\\ & \Rightarrow \left( x-9 \right)\left( x+2 \right)=0 \\\ \end{aligned}
Multiplication of two numbers gives 0 which means the terms are individually 0.
The solution of the equation is x=2,9x=-2,9 .
Now if we put x=2x=-2 , the logarithmic value log(23)log(5)\log \left( -2-3 \right)\log \left( -5 \right) becomes negative which is not possible.
Therefore, solution of log(x3)+log(x2)=log(2x+24)\log \left( x-3 \right)+\log \left( x-2 \right)=\log \left( 2x+24 \right) is x=9x=9 .
So, the correct answer is “9”.

Note : In case of the base is not mentioned then the general solution for the base for logarithm is 10. But the base of ee is fixed for ln\ln .
We also need to remember that for logarithm function there has to be a domain constraint.
For any logba{{\log }_{b}}a , a>0a>0 . This means for log(x3)+log(x2)=log(2x+24)\log \left( x-3 \right)+\log \left( x-2 \right)=\log \left( 2x+24 \right) , (x3),(x2),(2x+24)>0\left( x-3 \right),\left( x-2 \right),\left( 2x+24 \right)>0 . The simplified form is x>3x>3 .