Solveeit Logo

Question

Question: How do you solve \({\left( {1 + \tan A} \right)^2} + {\left( {1 + \cot A} \right)^2} = {\left( {\sec...

How do you solve (1+tanA)2+(1+cotA)2=(secA+cosecA)2{\left( {1 + \tan A} \right)^2} + {\left( {1 + \cot A} \right)^2} = {\left( {\sec A + \cos ecA} \right)^2}?

Explanation

Solution

Here, in the given question, we need to solve (1+tanA)2+(1+cotA)2=(secA+cosecA)2{\left( {1 + \tan A} \right)^2} + {\left( {1 + \cot A} \right)^2} = {\left( {\sec A + \cos ecA} \right)^2}, and find the values of AA. At first, we will convert all the trigonometric functions in term of sin\sin and cos\cos , after this we will take LCM on both sides of the given equation and simplify the equation and cancel-out the common factors. At the end we will find the values of AA.

Complete step by step answer:
We have, (1+tanA)2+(1+cotA)2=(secA+cosecA)2{\left( {1 + \tan A} \right)^2} + {\left( {1 + \cot A} \right)^2} = {\left( {\sec A + \cos ecA} \right)^2}. Let us convert all the trigonometric functions in the form of sin\sin and cos\cos .As we know tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}, cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}, secx=1cosx\sec x = \dfrac{1}{{\cos x}} and cosecx=1sinx\cos ecx = \dfrac{1}{{\sin x}}. Therefore, we get
(1+sinAcosA)2+(1+cosAsinA)2=(1cosA+1sinA)2\Rightarrow {\left( {1 + \dfrac{{\sin A}}{{\cos A}}} \right)^2} + {\left( {1 + \dfrac{{\cos A}}{{\sin A}}} \right)^2} = {\left( {\dfrac{1}{{\cos A}} + \dfrac{1}{{\sin A}}} \right)^2}

Take LCM on both sides.
(cosA+sinA)2cos2A+(sinA+cosA)2sin2A=(sinA+cosA)2sinAcosA\Rightarrow \dfrac{{{{\left( {\cos A + \sin A} \right)}^2}}}{{{{\cos }^2}A}} + \dfrac{{{{\left( {\sin A + \cos A} \right)}^2}}}{{{{\sin }^2}A}} = \dfrac{{{{\left( {\sin A + \cos A} \right)}^2}}}{{\sin A\cos A}}
Take (cosA+sinA)2{\left( {\cos A + \sin A} \right)^2} as a common term.
(cosA+sinA)2(1cos2A+1sin2A)=(sinA+cosA)2sinAcosA\Rightarrow {\left( {\cos A + \sin A} \right)^2}\left( {\dfrac{1}{{{{\cos }^2}A}} + \dfrac{1}{{{{\sin }^2}A}}} \right) = \dfrac{{{{\left( {\sin A + \cos A} \right)}^2}}}{{\sin A\cos A}}
On canceling-out common terms on both sides, we get
1cos2A+1sin2A=1sinAcosA\Rightarrow \dfrac{1}{{{{\cos }^2}A}} + \dfrac{1}{{{{\sin }^2}A}} = \dfrac{1}{{\sin A\cos A}}
Take LCM on the left-hand side
sin2A+cos2Asin2A×cos2A=1sinAcosA\Rightarrow \dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{{{\sin }^2}A \times {{\cos }^2}A}} = \dfrac{1}{{\sin A\cos A}}

As we know sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1. Therefore, we get
1(sinAcosA)2=1sinAcosA\Rightarrow \dfrac{1}{{{{\left( {\sin A\cos A} \right)}^2}}} = \dfrac{1}{{\sin A\cos A}}
On reciprocating both sides, we get
(sinAcosA)2=sinAcosA\Rightarrow {\left( {\sin A\cos A} \right)^2} = \sin A\cos A
(sinAcosA)2sinAcosA=0\Rightarrow {\left( {\sin A\cos A} \right)^2} - \sin A\cos A = 0
Take sinAcosA\sin A\cos A as a common factor.
(sinAcosA)(sinAcosA1)=0\Rightarrow \left( {\sin A\cos A} \right)\left( {\sin A\cos A - 1} \right) = 0
Now, we will find the values AA.
sinAcosA=0\Rightarrow \sin A\cos A = 0
From here we get,
sinA=0\Rightarrow \sin A = 0 and cosA=0\cos A = 0

For sinA=0\sin A = 0, we have
A=0,π,2π,3π,....A = 0,\pi ,2\pi ,3\pi ,....
For cosA=0\cos A = 0, we have
A=π2,3π2,5π2,7π2,.....A = \dfrac{\pi }{2},\dfrac{{3\pi }}{2},\dfrac{{5\pi }}{2},\dfrac{{7\pi }}{2},.....
sinAcosA=0\Rightarrow \sin A\cos A = 0
As we know, sin2A=2sinAcosA\sin 2A = 2\sin A\cos A, from here we get sinAcosA=12sin2A\sin A\cos A = \dfrac{1}{2}\sin 2A.
12sin2A=0\Rightarrow \dfrac{1}{2}\sin 2A = 0
sin2A=0\Rightarrow \sin 2A = 0
From here, we get
2A=0,π,2π,3π,.....2A = 0,\pi ,2\pi ,3\pi ,.....
On dividing by 22, we get
A=0,π2,π,3π2,2π,5π2,3π,7π2,.....A = 0,\dfrac{\pi }{2},\pi ,\dfrac{{3\pi }}{2},2\pi ,\dfrac{{5\pi }}{2},3\pi ,\dfrac{{7\pi }}{2},.....

Hence, the values of AA satisfying the equation (1+tanA)2+(1+cotA)2=(secA+cosecA)2{\left( {1 + \tan A} \right)^2} + {\left( {1 + \cot A} \right)^2} = {\left( {\sec A + \cos ecA} \right)^2} are, A=....,7π2,3π,5π2,2π,3π2,π,π2,0,π2,π,3π2,2π,3π,7π2,...A = ....,\dfrac{{ - 7\pi }}{2}, - 3\pi ,\dfrac{{ - 5\pi }}{2}, - 2\pi ,\dfrac{{ - 3\pi }}{2}, - \pi ,\dfrac{{ - \pi }}{2},0,\dfrac{\pi }{2},\pi ,\dfrac{{3\pi }}{2},2\pi ,3\pi ,\dfrac{{7\pi }}{2},...

Note: To solve this type of question try to convert the different functions in terms of two or three functions only and simplify it using identities. One must know all the trigonometric formulas to solve these types of questions and one must remember all the trigonometric values. To solve these type of questions we should know all the required values of standard angles say, 0,30,60,90,180,270,3600^\circ ,30^\circ ,60^\circ ,90^\circ ,180^\circ ,270^\circ ,360^\circ respectively for each trigonometric term such as sin,cos,tan,cosec,sec,cot\sin ,\cos ,\tan ,\cos ec,\sec ,\cot .