Question
Question: How do you solve \({\left( {1 + \tan A} \right)^2} + {\left( {1 + \cot A} \right)^2} = {\left( {\sec...
How do you solve (1+tanA)2+(1+cotA)2=(secA+cosecA)2?
Solution
Here, in the given question, we need to solve (1+tanA)2+(1+cotA)2=(secA+cosecA)2, and find the values of A. At first, we will convert all the trigonometric functions in term of sin and cos, after this we will take LCM on both sides of the given equation and simplify the equation and cancel-out the common factors. At the end we will find the values of A.
Complete step by step answer:
We have, (1+tanA)2+(1+cotA)2=(secA+cosecA)2. Let us convert all the trigonometric functions in the form of sin and cos.As we know tanx=cosxsinx, cotx=sinxcosx, secx=cosx1 and cosecx=sinx1. Therefore, we get
⇒(1+cosAsinA)2+(1+sinAcosA)2=(cosA1+sinA1)2
Take LCM on both sides.
⇒cos2A(cosA+sinA)2+sin2A(sinA+cosA)2=sinAcosA(sinA+cosA)2
Take (cosA+sinA)2 as a common term.
⇒(cosA+sinA)2(cos2A1+sin2A1)=sinAcosA(sinA+cosA)2
On canceling-out common terms on both sides, we get
⇒cos2A1+sin2A1=sinAcosA1
Take LCM on the left-hand side
⇒sin2A×cos2Asin2A+cos2A=sinAcosA1
As we know sin2A+cos2A=1. Therefore, we get
⇒(sinAcosA)21=sinAcosA1
On reciprocating both sides, we get
⇒(sinAcosA)2=sinAcosA
⇒(sinAcosA)2−sinAcosA=0
Take sinAcosA as a common factor.
⇒(sinAcosA)(sinAcosA−1)=0
Now, we will find the values A.
⇒sinAcosA=0
From here we get,
⇒sinA=0 and cosA=0
For sinA=0, we have
A=0,π,2π,3π,....
For cosA=0, we have
A=2π,23π,25π,27π,.....
⇒sinAcosA=0
As we know, sin2A=2sinAcosA, from here we get sinAcosA=21sin2A.
⇒21sin2A=0
⇒sin2A=0
From here, we get
2A=0,π,2π,3π,.....
On dividing by 2, we get
A=0,2π,π,23π,2π,25π,3π,27π,.....
Hence, the values of A satisfying the equation (1+tanA)2+(1+cotA)2=(secA+cosecA)2 are, A=....,2−7π,−3π,2−5π,−2π,2−3π,−π,2−π,0,2π,π,23π,2π,3π,27π,...
Note: To solve this type of question try to convert the different functions in terms of two or three functions only and simplify it using identities. One must know all the trigonometric formulas to solve these types of questions and one must remember all the trigonometric values. To solve these type of questions we should know all the required values of standard angles say, 0∘,30∘,60∘,90∘,180∘,270∘,360∘ respectively for each trigonometric term such as sin,cos,tan,cosec,sec,cot.