Solveeit Logo

Question

Question: How do you solve \(\int{\tan xdx}\)?...

How do you solve tanxdx\int{\tan xdx}?

Explanation

Solution

In this problem we have to calculate the integration value of the trigonometric ratio tanx\tan x. First, we will convert the given trigonometric ratio into sinx\sin x, cosx\cos x by using the basic definitions of trigonometric ratios i.e., tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. Now we will assume the substitution u=cosxu=\cos x For this assumption we will calculate the value of dudx\dfrac{du}{dx} by differentiating the equation u=cosxu=\cos x with respect to xx. Now we will substitute the values of uu, dudu in the integration value and simplify the equation by using the integration formulas. Now we will re substitute the value of u=cosxu=\cos x after applying the integration formulas and simplify the equation to get the required result.

Complete step by step answer:
Given that, tanxdx\int{\tan xdx}.
From the basic definitions of trigonometric ratios, we have the value of tanx\tan x as tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}. Substituting this value in the above integration value, then we will get
tanxdx=sinxcosxdx\Rightarrow \int{\tan xdx}=\int{\dfrac{\sin x}{\cos x}dx}
By observing the equation, we are going to take the substitution u=cosxu=\cos x in the above equation. Now differentiating the value of uu with respect to xx, then we will get
dudx=ddx(cosx)\Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( \cos x \right)
We have the differentiation value of cosx\cos x as sinx-\sin x, then the above equation modified as
dudx=sinx\Rightarrow \dfrac{du}{dx}=-\sin x
From the above equation, the value of dudu will be
du=sinxdx\Rightarrow du=-\sin xdx
Now substituting the value u=cosxu=\cos x in the integration value, then we will get
tanxdx=sinxudx\Rightarrow \int{\tan x}dx=\int{\dfrac{\sin x}{u}dx}
Multiplying the above equation with negative signs, then we will have
tanxdx=sinxudx\Rightarrow \int{\tan xdx}=-\int{\dfrac{-\sin x}{u}dx}
Substituting the value du=sinxdxdu=-\sin xdx in the above equation, then we will get
tanxdx=duu\Rightarrow \int{\tan xdx}=-\int{\dfrac{du}{u}}
We have the integration formula dxx=lnx+C\int{\dfrac{dx}{x}=\ln x+C}. Applying this formula in the above equation, then we will get
tanxdx=lnu+C\Rightarrow \int{\tan xdx}=-\ln \left| u \right|+C
Resubstituting the value of uu in the above equation, then we will get
tanxdx=lncosx+C\Rightarrow \int{\tan xdx}=-\ln \left| \cos x \right|+C
We have the logarithmic formula lna=ln1a-\ln \left| a \right|=\ln \dfrac{1}{a}. Applying this formula in the above equation, then we will have
tanxdx=ln(1cosx)+C\Rightarrow \int{\tan xdx}=\ln \left( \dfrac{1}{\cos x} \right)+C
We have the trigonometric formula 1cosx=secx\dfrac{1}{\cos x}=\sec x, then the integration value of the tanx\tan x will be
tanxdx=lnsecx+C\Rightarrow \int{\tan xdx}=\ln \left| \sec x \right|+C

Note: We can also follow the above procedure to calculate the integral value of cotx\cot x. We will use the definition of the cotx\cot x as cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}. We will take the substitution u=sinxu=\sin x and follow the above procedure to get the integral value of cotx\cot x.