Solveeit Logo

Question

Question: How do you solve \[\int{\sqrt{\dfrac{\cos \left( x \right)-{{\cos }^{3}}x}{1-{{\cos }^{3}}x}dx}}\]?...

How do you solve cos(x)cos3x1cos3xdx\int{\sqrt{\dfrac{\cos \left( x \right)-{{\cos }^{3}}x}{1-{{\cos }^{3}}x}dx}}?

Explanation

Solution

In the given question, we have been asked to integrate the following function. In order to solve the question, we integrate the numerical by following the substitution method. We substitute u=cos32(x)u={{\cos }^{\dfrac{3}{2}}}\left( x \right) and replace it with 2311u2du-\dfrac{2}{3}\int{\dfrac{1}{\sqrt{1-{{u}^{2}}}}du} and solve the numerical by further integration. After we have simplified our sum, we just need to integrate the terms and then we replace the substituted variables by the original variables.

Formula used:
The product to sum formulas of trigonometry:
sin(x)sin(y)=12(cos(yx)cos(y+x))\sin \left( x \right)\sin \left( y \right)=\dfrac{1}{2}\left( \cos \left( y-x \right)-\cos \left( y+x \right) \right),
sin2x=12(1cos(2x)){{\sin }^{2}}x=\dfrac{1}{2}\left( 1-\cos \left( 2x \right) \right),
cos(x)cos(y)=12(cos(y+x)+cos(yx))\cos \left( x \right)\cos \left( y \right)=\dfrac{1}{2}\left( \cos \left( y+x \right)+\cos \left( y-x \right) \right),
cos2x=12(cos(2x)+1){{\cos }^{2}}x=\dfrac{1}{2}\left( \cos \left( 2x \right)+1 \right),
sin(x)cos(y)=12(sin(y+x)sin(yx))\sin \left( x \right)\cos \left( y \right)=\dfrac{1}{2}\left( \sin \left( y+x \right)-\sin \left( y-x \right) \right),
cos(x)sin(y)=12sin(2x)\cos \left( x \right)\sin \left( y \right)=\dfrac{1}{2}\sin \left( 2x \right)
Addition formulas and multiple angle or argument formulas:
sin(3x)=3cos2(x)sin(x)sin3(x)\sin \left( 3x \right)=3{{\cos }^{2}}\left( x \right)\sin \left( x \right)-{{\sin }^{3}}\left( x \right)
cos(3x)=cos3(x)3cos(x)sin2(x)\cos \left( 3x \right)={{\cos }^{3}}\left( x \right)-3\cos \left( x \right){{\sin }^{2}}\left( x \right)

Complete step-by-step solution:
We have the given function,
cos(x)cos3x1cos3xdx\Rightarrow \int{\sqrt{\dfrac{\cos \left( x \right)-{{\cos }^{3}}x}{1-{{\cos }^{3}}x}dx}}
It can be rewrite as,
cos(x)cos3x1cos3xdx\Rightarrow \int{\dfrac{\sqrt{\cos \left( x \right)-{{\cos }^{3}}x}}{\sqrt{1-{{\cos }^{3}}x}}}dx
Applying the product to sum formulas of trigonometry:
sin(x)sin(y)=12(cos(yx)cos(y+x))\sin \left( x \right)\sin \left( y \right)=\dfrac{1}{2}\left( \cos \left( y-x \right)-\cos \left( y+x \right) \right),
sin2x=12(1cos(2x)){{\sin }^{2}}x=\dfrac{1}{2}\left( 1-\cos \left( 2x \right) \right),
cos(x)cos(y)=12(cos(y+x)+cos(yx))\cos \left( x \right)\cos \left( y \right)=\dfrac{1}{2}\left( \cos \left( y+x \right)+\cos \left( y-x \right) \right),
cos2x=12(cos(2x)+1){{\cos }^{2}}x=\dfrac{1}{2}\left( \cos \left( 2x \right)+1 \right),
sin(x)cos(y)=12(sin(y+x)sin(yx))\sin \left( x \right)\cos \left( y \right)=\dfrac{1}{2}\left( \sin \left( y+x \right)-\sin \left( y-x \right) \right),
cos(x)sin(y)=12sin(2x)\cos \left( x \right)\sin \left( y \right)=\dfrac{1}{2}\sin \left( 2x \right)
After applying, we get
cos(x)cos(3x)+3cos(x)41cos(3x)+3cos(x)4dx\Rightarrow \int{\dfrac{\sqrt{\cos \left( x \right)-\dfrac{\cos \left( 3x \right)+3\cos \left( x \right)}{4}}}{\sqrt{1-\dfrac{\cos \left( 3x \right)+3\cos \left( x \right)}{4}}}}dx
It can be rewrite as,
cos(x)cos(3x)cos(3x)3cos(x)+4dx\Rightarrow \int{\dfrac{\sqrt{\cos \left( x \right)-\cos \left( 3x \right)}}{\sqrt{-\cos \left( 3x \right)-3\cos \left( x \right)+4}}}dx
Apply addition formulas and multiple angle or argument formulas:
sin(3x)=3cos2(x)sin(x)sin3(x)\sin \left( 3x \right)=3{{\cos }^{2}}\left( x \right)\sin \left( x \right)-{{\sin }^{3}}\left( x \right)
cos(3x)=cos3(x)3cos(x)sin2(x)\cos \left( 3x \right)={{\cos }^{3}}\left( x \right)-3\cos \left( x \right){{\sin }^{2}}\left( x \right)
After applying, we get
3cos(x)sin2(x)cos3(x)+cos(x)3cos(x)sin2(x)cos3(x)3cos(x)+4dx\Rightarrow \int{\dfrac{\sqrt{3\cos \left( x \right){{\sin }^{2}}\left( x \right)-{{\cos }^{3}}\left( x \right)+\cos \left( x \right)}}{\sqrt{3\cos \left( x \right){{\sin }^{2}}\left( x \right)-{{\cos }^{3}}\left( x \right)-3\cos \left( x \right)+4}}}dx
Rewrite the above function by using trigonometric identities, we get
2cos(x)sin(x)44cos3(x)dx\Rightarrow \int{\dfrac{2\sqrt{\cos \left( x \right)}\sin \left( x \right)}{\sqrt{4-4{{\cos }^{3}}\left( x \right)}}}dx
Substitute u=cos32(x)u={{\cos }^{\dfrac{3}{2}}}\left( x \right) as,
u=cos32(x)u={{\cos }^{\dfrac{3}{2}}}\left( x \right)
Differentiating it, we get
dudx=3cos(x)sin(x)2\dfrac{du}{dx}=-\dfrac{3\sqrt{\cos \left( x \right)}\sin \left( x \right)}{2}
dx=23cos(x)sin(x)dudx=-\dfrac{2}{3\sqrt{\cos \left( x \right)}\sin \left( x \right)}du
Replacing this in plug in solved integrals,
231u2du\Rightarrow \int{-\dfrac{2}{3\sqrt{1-{{u}^{2}}}}du}
Simplifying the above numerical, we get
2311u2du\Rightarrow -\dfrac{2}{3}\int{\dfrac{1}{\sqrt{1-{{u}^{2}}}}du}
Now solving,
11u2du\int{\dfrac{1}{\sqrt{1-{{u}^{2}}}}du}, it is the standard integral which is equal to =arcsin(u)=\arcsin \left( u \right)
Replace it in previously solved integral, we get
2311u2du=2arcsin(u)3\Rightarrow -\dfrac{2}{3}\int{\dfrac{1}{\sqrt{1-{{u}^{2}}}}du}=-\dfrac{2\arcsin \left( u \right)}{3}
Replacing u=cos32(x)u={{\cos }^{\dfrac{3}{2}}}\left( x \right), we get
2arcsin(cos32(x))3\Rightarrow -\dfrac{2\arcsin \left( {{\cos }^{\dfrac{3}{2}}}\left( x \right) \right)}{3}
Therefore,
cos(x)cos3x1cos3xdx=2arcsin(cos32(x))3+C\Rightarrow \int{\sqrt{\dfrac{\cos \left( x \right)-{{\cos }^{3}}x}{1-{{\cos }^{3}}x}dx}}=-\dfrac{2\arcsin \left( {{\cos }^{\dfrac{3}{2}}}\left( x \right) \right)}{3}+C

Note: Integration is the part of calculus that includes the differentiation. Integration refers to the, add up smaller parts of any area given, volume given, etc to represents the whole value. To solve any given numerical, or function, there are different types of integration methods like integration by substitution, integration by parts, etc.