Solveeit Logo

Question

Question: How do you solve \(\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}} = \dfrac{{1 + \cos x}}{{\sin...

How do you solve 1+sinx+cosx1+sinxcosx=1+cosxsinx\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}} = \dfrac{{1 + \cos x}}{{\sin x}}?

Explanation

Solution

Hint : Here, in the given question, we need to prove that 1+sinx+cosx1+sinxcosx=1+cosxsinx\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}} = \dfrac{{1 + \cos x}}{{\sin x}}. We will first multiply and divide LHS by sinx\sin x. As we can see that in the right-hand side, the numerator value is in the terms of 1+cosx1 + \cos x, so we will try to convert sine\sin e function into cosine\cos ine using identities. After that we will take out the common terms and cancel out the common terms to get our required answer.
Formulae used :
I.sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x
II.tan2x=sec2x1{\tan ^2}x = {\sec ^2}x - 1
III.cosec2x=1+cot2x\cos e{c^2}x = 1 + {\cot ^2}x

Complete step-by-step answer :
We have to prove that, 1+sinx+cosx1+sinxcosx=1+cosxsinx\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}} = \dfrac{{1 + \cos x}}{{\sin x}}
L.H.S, 1+sinx+cosx1+sinxcosx\dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}}
Multiply and divide by sinx\sin x
sinxsinx×1+sinx+cosx1+sinxcosx\Rightarrow \dfrac{{\sin x}}{{\sin x}} \times \dfrac{{1 + \sin x + \cos x}}{{1 + \sin x - \cos x}}
On multiplication of sinx\sin x with numerator, we get
1sinx×[sinx+sinx.sinx+sinx.cosx1+sinxcosx]\Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x + \sin x.\sin x + \sin x.\cos x}}{{1 + \sin x - \cos x}}} \right]
1sinx×[sinx+sinx2+sinx.cosx1+sinxcosx]\Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x + \sin {x^2} + \sin x.\cos x}}{{1 + \sin x - \cos x}}} \right]
As we know, sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x. Therefore, we get
1sinx×[sinx+sinx.cosx+12cos2x1+sinxcosx]\Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x + \sin x.\cos x + {1^2} - {{\cos }^2}x}}{{1 + \sin x - \cos x}}} \right]
On taking sinx\sin x as a common factor and expanding 12cos2x{1^2} - {\cos ^2}x, using a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right), we get
1sinx×[sinx(1+cosx)+(1+cosx)(1cosx)1+sinxcosx]\Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\sin x\left( {1 + \cos x} \right) + \left( {1 + \cos x} \right)\left( {1 - \cos x} \right)}}{{1 + \sin x - \cos x}}} \right]
Now, we will take (1+cosx)\left( {1 + \cos x} \right) as a common term
1sinx×[(1+cosx)(sinx+1cosx)1+sinxcosx]\Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\left( {1 + \cos x} \right)\left( {\sin x + 1 - \cos x} \right)}}{{1 + \sin x - \cos x}}} \right]
On canceling out the common terms, we get
1sinx×[(1+cosx)1]\Rightarrow \dfrac{1}{{\sin x}} \times \left[ {\dfrac{{\left( {1 + \cos x} \right)}}{1}} \right]
This can also be written as,
1+cosxsinx\Rightarrow \dfrac{{1 + \cos x}}{{\sin x}} = RHS
Hence proved, LHS = RHS.

Note : In mathematics, the sine is a trigonometric function of an angle. The sine of an acute angle is defined in the context of a right triangle: for the specified angle, it is the ratio of the length of the side that is opposite that angle, to the length of the longest side of the triangle. Whereas cos is the ratio of the adjacent side to the hypotenuse of a right triangle.