Question
Question: How do you solve \[{\cot ^2}x{\csc ^2}x - {\cot ^2}x = 9\;\;\;{\text{for}}\;\;0 \leqslant x\leqslant...
How do you solve cot2xcsc2x−cot2x=9for0⩽x⩽2π?
Solution
Now in order to solve the above equation we should work with one side at a time and manipulate it to the other side. Using some basic trigonometric identities like we can simplify the above expression.
cotx=tanx1 1+cot2x=csc2x
In order to solve the given expression we have to use the above identities and express our given expression in that form and thereby solve it.
Complete step by step solution:
Given
{\cot ^2}x{\csc ^2}x - {\cot ^2}x = 9; \\
{\cot ^2}x\left( {{{\csc }^2}x - 1} \right) = 9............................\left( {ii} \right) \\
{\cot ^2}x\left( {{{\csc }^2}x - 1} \right) = 9 \\
{\cot ^2}x\left( {{{\cot }^2}x} \right) = 9....................\left( {iii} \right) \\
{\cot ^2}x = 3 \\
\Rightarrow \cot x = \pm \sqrt 3 \\
\dfrac{1}{{\tan x}} = \pm \sqrt 3 \\
\tan x = \pm \dfrac{1}{{\sqrt 3 }} \\
\Rightarrow x = n\pi + \dfrac{\pi }{6} \\
1 + {\tan ^2}x = {\sec ^2}x \\
\begin{array}{*{20}{l}}
{\sin \left( {2x} \right) = 2\sin \left( x \right)\cos \left( x \right)} \\
{\cos \left( {2x} \right) = {{\cos }^2}\left( x \right)-{{\sin }^2}\left( x \right) = 1-2{\text{ }}{{\sin
}^2}\left( x \right) = 2{\text{ }}{{\cos }^2}\left( x \right)-1}
\end{array} \\