Question
Question: How do you solve cos \(38 = \dfrac{{45}}{x}\)?...
How do you solve cos 38=x45?
Solution
In arithmetic, the cosine work (cos) is a capacity that relates the inside point of a triangle to the length of its sides. The cosine work, alongside the sine and digression work are the three essential geometrical capacities.
Complete step by step answer:
Given⇒cos38=x45
Cos38=0.788010753
\eqalign{
& \Rightarrow \dfrac{{\cos }}{1} = \dfrac{{45}}{x} \cr
& \Rightarrow \cos 38x = 45 \cr
& \Rightarrow 0.788010753 \times x = 45 \cr
& \Rightarrow x = \dfrac{{45}}{{0.788010753}} \cr
& \therefore x = 57.10581972 \cr}
Note: Check the answer by substituting x=57.10581972 in question.
\eqalign{
& \Rightarrow \operatorname{Cos} 38 = \dfrac{{45}}{x} \cr
& \Rightarrow \cos 38 = \dfrac{{45}}{{57.10581972}} \cr
& \Rightarrow 0.788010753 \cr}
And cos38=0.788010753