Solveeit Logo

Question

Question: How do you solve \[\arcsin \left( x \right) + \arcsin \left( {2x} \right) = \dfrac{\pi }{3}\] ?...

How do you solve arcsin(x)+arcsin(2x)=π3\arcsin \left( x \right) + \arcsin \left( {2x} \right) = \dfrac{\pi }{3} ?

Explanation

Solution

To solve the given equation apply various trigonometric functions and find out the general quadratic equation and then apply its formula to get the value of xx.

Complete step by step answer:
The given equation is
arcsin(x)+arcsin(2x)=π3\arcsin \left( x \right) + \arcsin \left( {2x} \right) = \dfrac{\pi }{3}
Let us consider the given equation as
α+β=π3\alpha + \beta = \dfrac{\pi }{3}
In which α\alpha and β\beta are represented as given angles of the equation as:
α=arcsin(x)\alpha = \arcsin \left( x \right)
β=arcsin(2x)\beta = \arcsin \left( {2x} \right)
Let us consider
sin(α)=x\sin \left( \alpha \right) = x
As we know that sin(α)=1sin2(α)\sin \left( \alpha \right) = \sqrt {1 - {{\sin }^2}\left( \alpha \right)} , so let us apply to the equation as
cos(α)=1sin2(α)\cos \left( \alpha \right) = \sqrt {1 - {{\sin }^2}\left( \alpha \right)}
Which implies,
cos(α)=1x2\cos \left( \alpha \right) = \sqrt {1 - {x^2}} …………………… 1
Now, let us consider
sin(β)=2x\sin \left( \beta \right) = 2x
In the same way sin(β)=1sin2(β)\sin \left( \beta \right) = \sqrt {1 - {{\sin }^2}\left( \beta \right)} , so let us apply to the equation as
cos(β)=1sin2(β)\cos \left( \beta \right) = \sqrt {1 - {{\sin }^2}\left( \beta \right)}
Which implies,
cos(β)=1(2x2)\cos \left( \beta \right) = \sqrt {1 - \left( {2{x^2}} \right)}
cos(β)=14x2\cos \left( \beta \right) = \sqrt {1 - 4{x^2}} ………………….. 2
Next, consider
α+β=π3\alpha + \beta = \dfrac{\pi }{3}
Which implies
cos(α+β)=cos(π3)\cos \left( {\alpha + \beta } \right) = \cos \left( {\dfrac{\pi }{3}} \right)
As we know the formula to expand cos(α+β)\cos \left( {\alpha + \beta } \right)is

\left( \alpha \right)\sin \left( \beta \right)$$ Applying the formula, we get $$\cos \left( \alpha \right)\cos \left( \beta \right) - \sin \left( \alpha \right)\sin \left( \beta \right) = \dfrac{1}{2}$$ ……………….. 3 Substitute the values of equation 1 and equation 2 in equation 3 we get $$\sqrt {1 - {x^2}} \cdot \sqrt {1 - 4{x^2}} - \left( x \right) \cdot \left( {2x} \right) = \dfrac{1}{2}$$ Combining all the x terms we get $$\sqrt {1 - {x^2} - 4{x^2} - 4{x^4}} = 2{x^2} + \dfrac{1}{2}$$ Squaring on both the sides of the equation as $${\left[ {\sqrt {1 - {x^2} - 4{x^2} - 4{x^4}} } \right]^2} = {\left[ {2{x^2} + \dfrac{1}{2}} \right]^2}$$ Simplifying the terms, we get $$1 - 5{x^2} - 4{x^4} = 4{x^4} + 2{x^2} + \dfrac{1}{4}$$ $$8{x^4} + 7{x^2} - \dfrac{3}{4} = 0$$ Hence, we get $$32{x^4} + 28{x^2} - 3 = 0$$ As the obtained equation is quadratic equation, hence let us apply the formula given as $$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$$ Applying the quadratic formula in the variable $${x^2}$$i.e., $${x^2} = \dfrac{{ - 28 \pm \sqrt {{{28}^2} - 4\left( {32} \right)\left( { - 3} \right)} }}{{2\left( {32} \right)}}$$ $${x^2} = \dfrac{{ - 28 \pm \sqrt {784 + 384} }}{{64}}$$ $${x^2} = \dfrac{{ - 28 \pm \sqrt {1168} }}{{64}}$$ $${x^2} = \dfrac{{ - 28 \pm \sqrt {16.73} }}{{64}}$$ $${x^2} = \dfrac{{ - 7 \pm \sqrt {73} }}{{16}}$$ **Therefore, for the given equation the value of $$x$$ is true for $$x = \sqrt {\dfrac{{ - 7 + \sqrt {73} }}{{16}}} $$** **Additional information:** The number $${b^2} - 4ac$$ is called "discriminant". If D < 0, then the quadratic equation has no real solutions (it has 2 complex solutions), if D = 0, then the quadratic equation has 1 solution and If D > 0, then the quadratic equation has 2 distinct solutions. **Formula used:** Every quadratic equation can have 0, 1 or 2 real solutions derived by the formula: $$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$$ where a, b, c are real numbers. The number $${b^2} - 4ac$$ is called "discriminant ". **Note:** The key point to find the value of $$x$$ in the given equation of the type $$\arcsin \left( x \right) + \arcsin \left( {2x} \right) = \dfrac{\pi }{3}$$, just apply various trigonometric functions to solve the equations and further simplifying the terms with respect to obtained equation.