Solveeit Logo

Question

Question: How do you solve \(5x - 5y + 10z = - 11\), \(10x + 5y - 5z = 1\) and \(15x - 15y - 10z = - 1\) using...

How do you solve 5x5y+10z=115x - 5y + 10z = - 11, 10x+5y5z=110x + 5y - 5z = 1 and 15x15y10z=115x - 15y - 10z = - 1 using matrices?

Explanation

Solution

Use the matrix equation AX=B{\mathbf{AX}} = {\mathbf{B}} to represent the given system of equations. You need A1{{\mathbf{A}}^{ - 1}} to solve this equation. Use A1=1AAdjA{{\mathbf{A}}^{ - 1}} = \dfrac{1}{{\left| {\mathbf{A}} \right|}}Adj{\mathbf{A}} to find A1{{\mathbf{A}}^{ - 1}} and solve the equation after substituting the values.

Complete step by step solution:
The given system of equations has three unknown quantities and three linear equations. So, we can find the particular solution of the system, if it exists. Now, we will use matrices to solve this system.
The given system of linear equations is,
5x5y+10z=115x - 5y + 10z = - 11
10x+5y5z=110x + 5y - 5z = 1
15x15y10z=115x - 15y - 10z = - 1
We can represent the system in the matrix form as AX=B{\mathbf{AX}} = {\mathbf{B}}.
Here, {\mathbf{A}} = \left[ {\begin{array}{*{20}{c}} 5&{ - 5}&{10} \\\ {10}&5&{ - 5} \\\ {15}&{ - 15}&{ - 10} \end{array}} \right], {\mathbf{X}} = \left[ {\begin{array}{*{20}{c}} x \\\ y \\\ z \end{array}} \right] and {\mathbf{B}} = \left[ {\begin{array}{*{20}{c}} { - 11} \\\ 1 \\\ { - 1} \end{array}} \right].
Now, we get X=A1B{\mathbf{X}} = {{\mathbf{A}}^{ - 1}}{\mathbf{B}} from the matrix equation, if the matrix A1{{\mathbf{A}}^{ - 1}} exists.
To confirm the existence of A1{{\mathbf{A}}^{ - 1}} we check whether A0\left| {\mathbf{A}} \right| \ne 0.
We have the formula to find A\left| {\mathbf{A}} \right| given as, a11(a22a33a23a32)a21(a12a33a13a32)+a31(a12a23a13a22){a_{11}}({a_{22}}{a_{33}} - {a_{23}}{a_{32}}) - {a_{21}}({a_{12}}{a_{33}} - {a_{13}}{a_{32}}) + {a_{31}}({a_{12}}{a_{23}} - {a_{13}}{a_{22}}) where aij{a_{ij}} is the element at the ith{i^{th}} row and jth{j^{th}} column of the matrix A{\mathbf{A}}.
So, we get A=5(5075)(5)(100+75)+10(15075)\left| {\mathbf{A}} \right| = 5( - 50 - 75) - ( - 5)( - 100 + 75) + 10( - 150 - 75).
A=5(125)(5)(25)+10(225)\Rightarrow \left| {\mathbf{A}} \right| = 5( - 125) - ( - 5)( - 25) + 10( - 225)
A=6251252250\Rightarrow \left| {\mathbf{A}} \right| = - 625 - 125 - 2250
A=3000\Rightarrow \left| {\mathbf{A}} \right| = - 3000
Since, A0\left| {\mathbf{A}} \right| \ne 0, we conclude that A1{{\mathbf{A}}^{ - 1}} exists.
Now we will use the formula A1=1AAdjA{{\mathbf{A}}^{ - 1}} = \dfrac{1}{{\left| {\mathbf{A}} \right|}}Adj{\mathbf{A}} to get A1{{\mathbf{A}}^{ - 1}}. But firstly, we need to find AdjAAdj{\mathbf{A}}.

5&{ - 5}&{10} \\\ {10}&5&{ - 5} \\\ {15}&{ - 15}&{ - 10} \end{array}} \right]$$ The adjoint of matrix ${\mathbf{A}}$ is the transpose of its cofactor matrix whose elements are the cofactors of each element in ${\mathbf{A}}$. Cofactor of ${a_{11}} = \left| {\begin{array}{*{20}{c}} 5&{ - 5} \\\ { - 15}&{ - 10} \end{array}} \right| = 5( - 10) - ( - 5)( - 15) = - 125$ Cofactor of ${a_{12}} = - \left| {\begin{array}{*{20}{c}} {10}&{ - 5} \\\ {15}&{ - 10} \end{array}} \right| = - \left( {10( - 10) - ( - 5)(15)} \right) = 25$ Cofactor of ${a_{13}} = \left| {\begin{array}{*{20}{c}} {10}&5 \\\ {15}&{ - 15} \end{array}} \right| = 10( - 15) - (5)(15) = - 225$ Cofactor of ${a_{21}} = - \left| {\begin{array}{*{20}{c}} { - 5}&{10} \\\ { - 15}&{ - 10} \end{array}} \right| = - \left( {( - 10)( - 5) - (10)( - 15)} \right) = - 200$ Cofactor of ${a_{22}} = \left| {\begin{array}{*{20}{c}} 5&{10} \\\ {15}&{ - 10} \end{array}} \right| = 5( - 10) - (10)(15) = - 200$ Cofactor of ${a_{23}} = - \left| {\begin{array}{*{20}{c}} 5&{ - 5} \\\ {15}&{ - 15} \end{array}} \right| = - \left( {( - 15)(5) - ( - 5)(15)} \right) = 0$ Cofactor of ${a_{31}} = \left| {\begin{array}{*{20}{c}} { - 5}&{10} \\\ 5&{ - 5} \end{array}} \right| = ( - 5)( - 5) - (10)(5) = - 25$ Cofactor of ${a_{32}} = - \left| {\begin{array}{*{20}{c}} 5&{10} \\\ {10}&{ - 5} \end{array}} \right| = - \left( {( - 5)(5) - (10)(10)} \right) = 125$ Cofactor of${a_{33}} = \left| {\begin{array}{*{20}{c}} 5&{ - 5} \\\ {10}&5 \end{array}} \right| = (5)(5) - (10)( - 5) = 75$. So, the cofactor matrix is $\left[ {\begin{array}{*{20}{c}} { - 125}&{25}&{ - 225} \\\ { - 200}&{ - 200}&0 \\\ { - 25}&{125}&{75} \end{array}} \right]$. Now adjoint is the transpose of the co-factor matrix. So, $Adj{\mathbf{A}} = \left[ {\begin{array}{*{20}{c}} { - 125}&{ - 200}&{ - 25} \\\ {25}&{ - 200}&{125} \\\ { - 225}&0&{75} \end{array}} \right]$. Now, using ${{\mathbf{A}}^{ - 1}} = \dfrac{1}{{\left| {\mathbf{A}} \right|}}Adj{\mathbf{A}}$, we have $${{\mathbf{A}}^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {\dfrac{1}{{24}}}&{\dfrac{1}{{15}}}&{\dfrac{1}{{120}}} \\\ { - \dfrac{1}{{120}}}&{\dfrac{1}{{15}}}&{ - \dfrac{1}{{24}}} \\\ {\dfrac{3}{{40}}}&0&{ - \dfrac{1}{{40}}} \end{array}} \right]$$. So, using the equation ${\mathbf{X}} = {{\mathbf{A}}^{ - 1}}{\mathbf{B}}$ we get $${\mathbf{X}} = \left[ {\begin{array}{*{20}{c}} {\dfrac{1}{{24}}}&{\dfrac{1}{{15}}}&{\dfrac{1}{{120}}} \\\ { - \dfrac{1}{{120}}}&{\dfrac{1}{{15}}}&{ - \dfrac{1}{{24}}} \\\ {\dfrac{3}{{40}}}&0&{ - \dfrac{1}{{40}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { - 11} \\\ 1 \\\ { - 1} \end{array}} \right]$$ $$ \Rightarrow {\mathbf{X}} = \left[ {\begin{array}{*{20}{c}} { - \dfrac{{11}}{{24}} + \dfrac{1}{{15}} - \dfrac{1}{{120}}} \\\ { + \dfrac{{11}}{{120}} + \dfrac{1}{{15}} + \dfrac{1}{{24}}} \\\ { - \dfrac{{33}}{{40}} + \dfrac{1}{{40}}} \end{array}} \right]$$ $$ \Rightarrow {\mathbf{X}} = \left[ {\begin{array}{*{20}{c}} { - \dfrac{{48}}{{120}}} \\\ {\dfrac{{24}}{{120}}} \\\ { - \dfrac{{32}}{{40}}} \end{array}} \right]$$ $$ \Rightarrow {\mathbf{X}} = \left[ {\begin{array}{*{20}{c}} { - \dfrac{2}{5}} \\\ {\dfrac{1}{5}} \\\ { - \dfrac{4}{5}} \end{array}} \right]$$ **Hence, the solution of the $5x - 5y + 10z = - 11$, $10x + 5y - 5z = 1$ and $15x - 15y - 10z = - 1$ is $x = \dfrac{{ - 2}}{5},{\text{ }}y = \dfrac{1}{5}{\text{ and }}z = \dfrac{{ - 4}}{5}$.** **Note:** It is important to be careful while doing calculations in these questions. As, it would be tedious and time-consuming to re-check the calculations, once done. Also, remember that if the coefficient matrix doesn’t have an inverse, then the system either is inconsistent (does not have a solution) or has infinitely many solutions.